Sentiment Analysis of Persian-English Code-mixed Texts

Nazanin Sabri, Ali Edalat, B. Bahrak
{"title":"Sentiment Analysis of Persian-English Code-mixed Texts","authors":"Nazanin Sabri, Ali Edalat, B. Bahrak","doi":"10.1109/CSICC52343.2021.9420605","DOIUrl":null,"url":null,"abstract":"The rapid production of data on the internet and the need to understand how users are feeling from a business and research perspective has prompted the creation of numerous automatic monolingual sentiment detection systems. More recently however, due to the unstructured nature of data on social media, we are observing more instances of multilingual and code-mixed texts. This development in content type has created a new demand for code-mixed sentiment analysis systems. In this study we collect, label and thus create a dataset of Persian-English code-mixed tweets. We then proceed to introduce a model which uses BERT pretrained embeddings as well as translation models to automatically learn the polarity scores of these Tweets. Our model outperforms the baseline models that use Naïve Bayes and Random Forest methods.","PeriodicalId":374593,"journal":{"name":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","volume":"277 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICC52343.2021.9420605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The rapid production of data on the internet and the need to understand how users are feeling from a business and research perspective has prompted the creation of numerous automatic monolingual sentiment detection systems. More recently however, due to the unstructured nature of data on social media, we are observing more instances of multilingual and code-mixed texts. This development in content type has created a new demand for code-mixed sentiment analysis systems. In this study we collect, label and thus create a dataset of Persian-English code-mixed tweets. We then proceed to introduce a model which uses BERT pretrained embeddings as well as translation models to automatically learn the polarity scores of these Tweets. Our model outperforms the baseline models that use Naïve Bayes and Random Forest methods.
波斯语-英语语码混合语篇情感分析
互联网上数据的快速产生,以及从商业和研究的角度了解用户感受的需要,促使了许多自动单语情感检测系统的诞生。然而,最近,由于社交媒体上数据的非结构化性质,我们观察到更多的多语言和代码混合文本的实例。内容类型的发展产生了对代码混合情感分析系统的新需求。在这项研究中,我们收集、标记并创建了波斯语-英语代码混合推文的数据集。然后,我们继续引入一个模型,该模型使用BERT预训练的嵌入和翻译模型来自动学习这些推文的极性分数。我们的模型优于使用Naïve贝叶斯和随机森林方法的基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信