Robust and Energy Efficient Malware Detection for Robotic Cyber-Physical Systems

Upinder Kaur, Z. Berkay Celik, R. Voyles
{"title":"Robust and Energy Efficient Malware Detection for Robotic Cyber-Physical Systems","authors":"Upinder Kaur, Z. Berkay Celik, R. Voyles","doi":"10.1109/iccps54341.2022.00048","DOIUrl":null,"url":null,"abstract":"Cyber-Physical Systems (CPS) increasingly use multiple robots as edge devices to enhance their functionalities. However, this introduces new security vulnerabilities such as control channel attacks and false data injection that an adversary can exploit to put the users and environment at risk. In this paper, we build a robust malware detection system strengthened by carefully crafted adversarial samples. We generate adver-sarial samples within the bounds of domain constraints and integrate them into model training to improve the model's robustness. Additionally, we formulate an objective function to distribute the computation of malware detection to multiple edges, making optimal use of the robot mesh network to reduce power consumption. In the adjoining poster, we show the details of the dataset and the models, and illustrate the specifics of our contributions.","PeriodicalId":340078,"journal":{"name":"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccps54341.2022.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Cyber-Physical Systems (CPS) increasingly use multiple robots as edge devices to enhance their functionalities. However, this introduces new security vulnerabilities such as control channel attacks and false data injection that an adversary can exploit to put the users and environment at risk. In this paper, we build a robust malware detection system strengthened by carefully crafted adversarial samples. We generate adver-sarial samples within the bounds of domain constraints and integrate them into model training to improve the model's robustness. Additionally, we formulate an objective function to distribute the computation of malware detection to multiple edges, making optimal use of the robot mesh network to reduce power consumption. In the adjoining poster, we show the details of the dataset and the models, and illustrate the specifics of our contributions.
机器人网络物理系统的鲁棒和节能恶意软件检测
网络物理系统(CPS)越来越多地使用多个机器人作为边缘设备来增强其功能。然而,这引入了新的安全漏洞,例如控制通道攻击和虚假数据注入,攻击者可以利用这些漏洞将用户和环境置于危险之中。在本文中,我们建立了一个强大的恶意软件检测系统,通过精心制作的对抗样本进行增强。我们在域约束范围内生成对抗样本,并将其集成到模型训练中,以提高模型的鲁棒性。此外,我们还制定了一个目标函数,将恶意软件检测的计算分配到多个边缘,从而优化利用机器人网格网络以降低功耗。在相邻的海报中,我们展示了数据集和模型的细节,并说明了我们贡献的具体内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信