Rev: A Video Engine for Object Re-identification at the City Scale

Tiantu Xu, Kaiwen Shen, Yang Fu, Humphrey Shi, F. Lin
{"title":"Rev: A Video Engine for Object Re-identification at the City Scale","authors":"Tiantu Xu, Kaiwen Shen, Yang Fu, Humphrey Shi, F. Lin","doi":"10.1109/SEC54971.2022.00022","DOIUrl":null,"url":null,"abstract":"Object re-identification (Re ID) is a key application of city-scale cameras on the edge. It is challenged by the limited accuracy of vision algorithms and the large video volume. We present Rev, a practical ReID engine that builds upon three new techniques. (1) Rev formulates ReID as a spatiotemporal query. Instead of retrieving all the images of a target object, it looks for locations and times in which the target object appeared. (2) Rev makes robust assessment of the target object occurrences by clustering unreliable object features. Each resultant cluster represents the general impression of a distinct object. (3) Rev samples cameras strategically in order to maximize its spatiotemporal coverage at low compute cost. Through an evaluation on 25 hours of videos from 25 cameras, Rev reached a high accuracy of 0.87 (recall at 5) across 70 queries. It runs at 830 × of video realtime in achieving high accuracy.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Object re-identification (Re ID) is a key application of city-scale cameras on the edge. It is challenged by the limited accuracy of vision algorithms and the large video volume. We present Rev, a practical ReID engine that builds upon three new techniques. (1) Rev formulates ReID as a spatiotemporal query. Instead of retrieving all the images of a target object, it looks for locations and times in which the target object appeared. (2) Rev makes robust assessment of the target object occurrences by clustering unreliable object features. Each resultant cluster represents the general impression of a distinct object. (3) Rev samples cameras strategically in order to maximize its spatiotemporal coverage at low compute cost. Through an evaluation on 25 hours of videos from 25 cameras, Rev reached a high accuracy of 0.87 (recall at 5) across 70 queries. It runs at 830 × of video realtime in achieving high accuracy.
Rev:城市尺度下物体再识别的视频引擎
物体再识别(Re - ID)是城市规模边缘摄像机的关键应用。由于视觉算法的精度有限,且视频量大,对其提出了挑战。我们介绍Rev,一个基于三种新技术的实用ReID引擎。(1) Rev将ReID表述为一个时空查询。它不是检索目标对象的所有图像,而是查找目标对象出现的位置和时间。Rev通过聚类不可靠的目标特征对目标对象的出现进行鲁棒性评估。每个形成的星团都代表了一个不同物体的总体印象。(3)在低计算成本的前提下,对摄像机进行有策略的Rev采样,使其时空覆盖最大化。通过对来自25个摄像机的25个小时的视频进行评估,Rev在70个查询中达到了0.87(召回率为5)的高精度。它运行在830倍的视频实时性,实现高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信