Unsupervised Machine Learning Applications for Seismic Facies Classification

S. Chopra, K. Marfurt
{"title":"Unsupervised Machine Learning Applications for Seismic Facies Classification","authors":"S. Chopra, K. Marfurt","doi":"10.15530/URTEC-2019-557","DOIUrl":null,"url":null,"abstract":"Unsupervised ML uses the attributes themselves as both training data and data to be analyzed. The simplest algorithm is K-means, wherein the interpreter defines the number of facies (clusters) to be found. The algorithm then finds means and standard deviations (more generally, covariance matrices) to determine the center and the extent of each cluster in multidimensional attribute space, and thus generates different clusters.","PeriodicalId":432911,"journal":{"name":"Proceedings of the 7th Unconventional Resources Technology Conference","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th Unconventional Resources Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15530/URTEC-2019-557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Unsupervised ML uses the attributes themselves as both training data and data to be analyzed. The simplest algorithm is K-means, wherein the interpreter defines the number of facies (clusters) to be found. The algorithm then finds means and standard deviations (more generally, covariance matrices) to determine the center and the extent of each cluster in multidimensional attribute space, and thus generates different clusters.
无监督机器学习在地震相分类中的应用
无监督ML使用属性本身作为训练数据和待分析数据。最简单的算法是K-means,其中解释器定义要找到的相(簇)的数量。然后,该算法找到均值和标准差(更一般的是协方差矩阵)来确定每个聚类在多维属性空间中的中心和范围,从而生成不同的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信