A modification of the kummer's method for efficient computation of the 2-D Green's functions for 1-D periodic structures

S. Skobelev
{"title":"A modification of the kummer's method for efficient computation of the 2-D Green's functions for 1-D periodic structures","authors":"S. Skobelev","doi":"10.1109/URSIGASS.2011.6050425","DOIUrl":null,"url":null,"abstract":"A new modification of the Kummer's method of Mth order for 2≤M≤6 is proposed for efficient computation of the 2-D Green's function for 1-D periodic structures in homogeneous media. The modification consists in transformation of the auxiliary series constructed of asymptotic terms of the original spectral series into a new series which, unlike the previous one, allows its summation in closed form. The new representation of the Green's functions consists of a rapidly converging difference series whose terms decay as q−(M+1), as well a new rigorous expression for the sum of the transformed auxiliary series.","PeriodicalId":325870,"journal":{"name":"2011 XXXth URSI General Assembly and Scientific Symposium","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 XXXth URSI General Assembly and Scientific Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URSIGASS.2011.6050425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new modification of the Kummer's method of Mth order for 2≤M≤6 is proposed for efficient computation of the 2-D Green's function for 1-D periodic structures in homogeneous media. The modification consists in transformation of the auxiliary series constructed of asymptotic terms of the original spectral series into a new series which, unlike the previous one, allows its summation in closed form. The new representation of the Green's functions consists of a rapidly converging difference series whose terms decay as q−(M+1), as well a new rigorous expression for the sum of the transformed auxiliary series.
对kummer方法的改进,使二维格林函数在一维周期结构中的有效计算
为了有效地计算均匀介质中一维周期结构的二维格林函数,提出了对2≤M≤6的Kummer的M阶方法的一种新的改进。这种改进是将由原谱级数的渐近项构成的辅助级数变换为一个新的级数,使之与原谱级数不同,允许其以封闭形式求和。格林函数的新表示包括一个项衰减为q−(M+1)的快速收敛差分级数,以及变换后的辅助级数和的新的严格表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信