A Hybrid type ADMM for Multi-Block Separable Convex Programming

Bin Wang, Jun Fang
{"title":"A Hybrid type ADMM for Multi-Block Separable Convex Programming","authors":"Bin Wang, Jun Fang","doi":"10.1109/WCSP.2018.8555622","DOIUrl":null,"url":null,"abstract":"The alternating direction method of multiplier (ADMM) is a popular method for solving composite convex minimization problems with separable linear constraints. Unfortunately, the direct extension of the ADMM for multi-block problems is not necessarily convergent. To address this issue, several variants of the ADMM were proposed, among which the parallel splitting algorithm has attracted much attention due to its efficiency and simplicity. However, a major drawback of the parallel splitting algorithm is that the weighting factor placed on the proximal term has to be greater than a certain value in order to ensure the convergence. A large weighting factor has the effect of forcing the current solution to stay close to its previous solution, thus leading to a slow convergence speed. In this paper, we propose a new hybrid type ADMM for multi-block separable convex programming. The proposed method places a much smaller weighting factor on the proximal term. Thus the proposed algorithm has the potential to achieve faster convergence rates. Numerical results are provided to illustrate the efficiency of the proposed algorithm.","PeriodicalId":423073,"journal":{"name":"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2018.8555622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The alternating direction method of multiplier (ADMM) is a popular method for solving composite convex minimization problems with separable linear constraints. Unfortunately, the direct extension of the ADMM for multi-block problems is not necessarily convergent. To address this issue, several variants of the ADMM were proposed, among which the parallel splitting algorithm has attracted much attention due to its efficiency and simplicity. However, a major drawback of the parallel splitting algorithm is that the weighting factor placed on the proximal term has to be greater than a certain value in order to ensure the convergence. A large weighting factor has the effect of forcing the current solution to stay close to its previous solution, thus leading to a slow convergence speed. In this paper, we propose a new hybrid type ADMM for multi-block separable convex programming. The proposed method places a much smaller weighting factor on the proximal term. Thus the proposed algorithm has the potential to achieve faster convergence rates. Numerical results are provided to illustrate the efficiency of the proposed algorithm.
多块可分凸规划的混合型ADMM
乘法器的交替方向法是求解具有可分离线性约束的复合凸极小化问题的常用方法。不幸的是,ADMM对多块问题的直接扩展并不一定是收敛的。为了解决这一问题,人们提出了几种ADMM的变体,其中并行分割算法因其高效和简单而备受关注。然而,并行分割算法的一个主要缺点是,为了保证收敛,放置在最近项上的加权因子必须大于某个值。较大的权重因子会迫使当前解与前一个解保持接近,从而导致收敛速度较慢。针对多块可分凸规划问题,提出了一种新的混合型ADMM。所提出的方法将一个小得多的权重因子放在最近项上。因此,该算法有可能实现更快的收敛速度。数值结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信