FaDO: FaaS Functions and Data Orchestrator for Multiple Serverless Edge-Cloud Clusters

Christopher Peter Smith, Anshul Jindal, Mohak Chadha, M. Gerndt, S. Benedict
{"title":"FaDO: FaaS Functions and Data Orchestrator for Multiple Serverless Edge-Cloud Clusters","authors":"Christopher Peter Smith, Anshul Jindal, Mohak Chadha, M. Gerndt, S. Benedict","doi":"10.1109/icfec54809.2022.00010","DOIUrl":null,"url":null,"abstract":"Function-as-a-Service (FaaS) is an attractive cloud computing model that simplifies application development and deployment. However, current serverless compute platforms do not consider data placement when scheduling functions. With the growing demand for edge-cloud continuum, multi-cloud, and multi-serverless applications, this flaw means serverless technologies are still ill-suited to latency-sensitive operations like media streaming. This work proposes a solution by presenting a tool called FaDO: FaaS Functions and Data Orchestrator, designed to allow data-aware functions scheduling across multi-serverless compute clusters present at different locations, such as at the edge and in the cloud. FaDO works through header-based HTTP reverse proxying and uses three load-balancing algorithms: 1) The Least Connections, 2) Round Robin, and 3) Random for load balancing the invocations of the function across the suitable serverless compute clusters based on the set storage policies. FaDO further provides users with an abstraction of the serverless compute cluster’s storage, allowing users to interact with data across different storage services through a unified interface. In addition, users can configure automatic and policy-aware granular data replications, causing FaDO to spread data across the clusters while respecting location constraints. Load testing results show that it is capable of load balancing high-throughput workloads, placing functions near their data without contributing any significant performance overhead.","PeriodicalId":423599,"journal":{"name":"2022 IEEE 6th International Conference on Fog and Edge Computing (ICFEC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th International Conference on Fog and Edge Computing (ICFEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icfec54809.2022.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Function-as-a-Service (FaaS) is an attractive cloud computing model that simplifies application development and deployment. However, current serverless compute platforms do not consider data placement when scheduling functions. With the growing demand for edge-cloud continuum, multi-cloud, and multi-serverless applications, this flaw means serverless technologies are still ill-suited to latency-sensitive operations like media streaming. This work proposes a solution by presenting a tool called FaDO: FaaS Functions and Data Orchestrator, designed to allow data-aware functions scheduling across multi-serverless compute clusters present at different locations, such as at the edge and in the cloud. FaDO works through header-based HTTP reverse proxying and uses three load-balancing algorithms: 1) The Least Connections, 2) Round Robin, and 3) Random for load balancing the invocations of the function across the suitable serverless compute clusters based on the set storage policies. FaDO further provides users with an abstraction of the serverless compute cluster’s storage, allowing users to interact with data across different storage services through a unified interface. In addition, users can configure automatic and policy-aware granular data replications, causing FaDO to spread data across the clusters while respecting location constraints. Load testing results show that it is capable of load balancing high-throughput workloads, placing functions near their data without contributing any significant performance overhead.
FaDO:多个无服务器边缘云集群的FaaS功能和数据编排器
功能即服务(FaaS)是一种很有吸引力的云计算模型,它简化了应用程序的开发和部署。但是,当前的无服务器计算平台在调度功能时不考虑数据放置。随着对边缘云连续体、多云和多无服务器应用程序的需求不断增长,这一缺陷意味着无服务器技术仍然不适合对延迟敏感的操作,如媒体流。这项工作提出了一个解决方案,提出了一个名为FaDO的工具:FaaS功能和数据编排器,旨在允许跨不同位置(如边缘和云中)的多服务器计算集群进行数据感知功能调度。FaDO通过基于报头的HTTP反向代理工作,并使用三种负载均衡算法:1)最小连接(Least Connections)、2)轮询(Round Robin)和3)随机(Random),根据设置的存储策略在合适的无服务器计算集群上对函数的调用进行负载均衡。FaDO进一步为用户提供了无服务器计算集群存储的抽象,允许用户通过统一的接口与不同存储服务的数据进行交互。此外,用户可以配置自动和策略感知的粒度数据复制,从而使FaDO在尊重位置约束的情况下跨集群传播数据。负载测试结果表明,它能够负载平衡高吞吐量的工作负载,将功能放在数据附近,而不会造成任何显著的性能开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信