Interpolating Subdivisions Based on Difference Interpolating Functions

Baocai Yin, Yong Zhang, Dehui Kong, Lichun Wang
{"title":"Interpolating Subdivisions Based on Difference Interpolating Functions","authors":"Baocai Yin, Yong Zhang, Dehui Kong, Lichun Wang","doi":"10.1109/ICDH.2012.11","DOIUrl":null,"url":null,"abstract":"Subdivision algorithm defines a very powerful way of constructing smooth, continuous, seamless surface. This paper proposed to construct families of interpolating subdivision from approximating subdivision by combining an approximating scheme with a difference interpolating function. By combining Loop subdivision with two-point linear interpolation, the modified Butterfly scheme is generated. Additionally, a new interpolating subdivision scheme, Loop-Butterfly, was constructed by combining Loop subdivision with Butterfly interpolation. The results show that the proposed method keeps the fairing surface of approximating schemes.","PeriodicalId":308799,"journal":{"name":"2012 Fourth International Conference on Digital Home","volume":"202 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Digital Home","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDH.2012.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Subdivision algorithm defines a very powerful way of constructing smooth, continuous, seamless surface. This paper proposed to construct families of interpolating subdivision from approximating subdivision by combining an approximating scheme with a difference interpolating function. By combining Loop subdivision with two-point linear interpolation, the modified Butterfly scheme is generated. Additionally, a new interpolating subdivision scheme, Loop-Butterfly, was constructed by combining Loop subdivision with Butterfly interpolation. The results show that the proposed method keeps the fairing surface of approximating schemes.
基于差分插值函数的插值细分
细分算法定义了一种构造光滑、连续、无缝曲面的强大方法。本文提出将近似格式与差分插值函数相结合,由近似细分构造插值细分族。将环路细分与两点线性插值相结合,生成了改进的蝶形方案。此外,将Loop细分与Butterfly插值相结合,构造了一种新的插值细分方案——Loop-Butterfly。结果表明,该方法保持了近似方案的整流面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信