Reframing Continuous Input Attributes

Chowdhury Farhan Ahmed, N. Lachiche, Clément Charnay, Agnès Braud
{"title":"Reframing Continuous Input Attributes","authors":"Chowdhury Farhan Ahmed, N. Lachiche, Clément Charnay, Agnès Braud","doi":"10.1109/ICTAI.2014.16","DOIUrl":null,"url":null,"abstract":"Reuse of learnt knowledge is of critical importance in the majority of knowledge-intensive application areas, particularly because the operating context can be expected to vary from training to deployment. Dataset shift is a crucial example of this where training and testing datasets follow different distributions. However, most of the existing dataset shift solving algorithms need costly retraining operation and are not suitable to use the existing model. In this paper, we propose a new approach called reframing to handle dataset shift. The main objective of reframing is to build a model once and make it workable without retraining. We propose two efficient reframing algorithms to learn the optimal shift parameter values using only a small amount of labelled data available in the deployment. Thus, they can transform the shifted input attributes with the optimal parameter values and use the same existing model in several deployment environments without retraining. We have addressed supervised learning tasks both for classification and regression. Extensive experimental results demonstrate the efficiency and effectiveness of our approach compared to the existing solutions. In particular, we report the existence of dataset shift in two real-life datasets. These real-life unknown shifts can also be accurately modeled by our algorithms.","PeriodicalId":142794,"journal":{"name":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2014.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Reuse of learnt knowledge is of critical importance in the majority of knowledge-intensive application areas, particularly because the operating context can be expected to vary from training to deployment. Dataset shift is a crucial example of this where training and testing datasets follow different distributions. However, most of the existing dataset shift solving algorithms need costly retraining operation and are not suitable to use the existing model. In this paper, we propose a new approach called reframing to handle dataset shift. The main objective of reframing is to build a model once and make it workable without retraining. We propose two efficient reframing algorithms to learn the optimal shift parameter values using only a small amount of labelled data available in the deployment. Thus, they can transform the shifted input attributes with the optimal parameter values and use the same existing model in several deployment environments without retraining. We have addressed supervised learning tasks both for classification and regression. Extensive experimental results demonstrate the efficiency and effectiveness of our approach compared to the existing solutions. In particular, we report the existence of dataset shift in two real-life datasets. These real-life unknown shifts can also be accurately modeled by our algorithms.
重构连续输入属性
在大多数知识密集型应用领域,学习到的知识的重用是至关重要的,特别是因为从培训到部署的操作环境可能会有所不同。数据集转移是一个重要的例子,训练和测试数据集遵循不同的分布。然而,现有的大多数数据集移位求解算法需要进行昂贵的再训练操作,并且不适合使用现有的模型。在本文中,我们提出了一种新的方法,称为重构来处理数据集的移动。重构的主要目标是建立一个模型,并使其无需再培训即可使用。我们提出了两种有效的重构算法,仅使用部署中可用的少量标记数据来学习最优移位参数值。因此,它们可以用最优参数值转换移位的输入属性,并在多个部署环境中使用相同的现有模型,而无需重新训练。我们已经解决了分类和回归的监督学习任务。大量的实验结果表明,与现有的解决方案相比,我们的方法是有效的。特别地,我们报告了两个真实数据集中数据集移位的存在。这些现实生活中的未知变化也可以通过我们的算法精确地建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信