Practical Deep Learning Architecture Optimization

Martin Wistuba
{"title":"Practical Deep Learning Architecture Optimization","authors":"Martin Wistuba","doi":"10.1109/DSAA.2018.00037","DOIUrl":null,"url":null,"abstract":"The design of neural network architectures for a new data set is a laborious task which requires human deep learning expertise. In order to make deep learning available for a broader audience, automated methods for finding a neural network architecture are vital. Recently proposed methods can already achieve human expert level performances. However, these methods have run times of months or even years of GPU computing time, ignoring hardware constraints as faced by many researchers and companies. We propose the use of Monte Carlo planning in combination with two different UCT (upper confidence bound applied to trees) derivations to search for network architectures. We adapt the UCT algorithm to the needs of network architecture search by proposing two ways of sharing information between different branches of the search tree. In an empirical study we are able to demonstrate that this method is able to find competitive networks for MNIST, SVHN and CIFAR-10 in just a single GPU day. Extending the search time to five GPU days, we are able to outperform man-made architectures and our competitors which consider the same types of layers.","PeriodicalId":208455,"journal":{"name":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2018.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The design of neural network architectures for a new data set is a laborious task which requires human deep learning expertise. In order to make deep learning available for a broader audience, automated methods for finding a neural network architecture are vital. Recently proposed methods can already achieve human expert level performances. However, these methods have run times of months or even years of GPU computing time, ignoring hardware constraints as faced by many researchers and companies. We propose the use of Monte Carlo planning in combination with two different UCT (upper confidence bound applied to trees) derivations to search for network architectures. We adapt the UCT algorithm to the needs of network architecture search by proposing two ways of sharing information between different branches of the search tree. In an empirical study we are able to demonstrate that this method is able to find competitive networks for MNIST, SVHN and CIFAR-10 in just a single GPU day. Extending the search time to five GPU days, we are able to outperform man-made architectures and our competitors which consider the same types of layers.
实用深度学习架构优化
为新数据集设计神经网络架构是一项艰巨的任务,需要人类的深度学习专业知识。为了让更广泛的受众使用深度学习,寻找神经网络架构的自动化方法至关重要。最近提出的方法已经可以达到人类专家水平的表现。然而,这些方法的运行时间是几个月甚至几年的GPU计算时间,忽略了许多研究人员和公司面临的硬件限制。我们建议将蒙特卡罗规划与两种不同的UCT(应用于树的上置信度界)衍生相结合来搜索网络架构。通过提出在搜索树的不同分支之间共享信息的两种方式,使UCT算法适应网络架构搜索的需要。在一项实证研究中,我们能够证明这种方法能够在一个GPU日内找到MNIST、SVHN和CIFAR-10的竞争网络。将搜索时间延长到5个GPU天,我们能够超越人工架构和考虑相同类型层的竞争对手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信