Robust object detection using cascade filter in MPEG videos

Ashraf M. A. Ahmad, Duan-Yu Chen, Suh-Yin Lee
{"title":"Robust object detection using cascade filter in MPEG videos","authors":"Ashraf M. A. Ahmad, Duan-Yu Chen, Suh-Yin Lee","doi":"10.1109/MMSE.2003.1254442","DOIUrl":null,"url":null,"abstract":"We propose a novel approach for motion vector (MV) based object detection in MPEG-2 video streams. Rather than processing the extracted MV fields that are directly extracted from MPEG-2 video streams in the compressed domain, we perform MV smoothing, perform MV noise reduction, obtain more robust object information, and refine this information through a cascaded filter composed of a Gaussian filter and a median filter. As a result, the object detection algorithm is more capable of accurately detecting objects. We compare the performance of our proposed system with the popular and commonly used spatial filter processing techniques: median filter, mean filter, Gaussian filter, and no filter. Based on experimental results performed over the MPEG7 testing dataset and measuring performance using the standard recall and precision metrics, object detection using the cascade filter is remarkably superior to the alternative filtering techniques. In addition to these results, we describe a user system interface that we developed, where users can maintain the filter parameters interactively.","PeriodicalId":322357,"journal":{"name":"Fifth International Symposium on Multimedia Software Engineering, 2003. Proceedings.","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Symposium on Multimedia Software Engineering, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSE.2003.1254442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We propose a novel approach for motion vector (MV) based object detection in MPEG-2 video streams. Rather than processing the extracted MV fields that are directly extracted from MPEG-2 video streams in the compressed domain, we perform MV smoothing, perform MV noise reduction, obtain more robust object information, and refine this information through a cascaded filter composed of a Gaussian filter and a median filter. As a result, the object detection algorithm is more capable of accurately detecting objects. We compare the performance of our proposed system with the popular and commonly used spatial filter processing techniques: median filter, mean filter, Gaussian filter, and no filter. Based on experimental results performed over the MPEG7 testing dataset and measuring performance using the standard recall and precision metrics, object detection using the cascade filter is remarkably superior to the alternative filtering techniques. In addition to these results, we describe a user system interface that we developed, where users can maintain the filter parameters interactively.
级联滤波器在MPEG视频中的鲁棒目标检测
提出了一种基于运动矢量(MV)的MPEG-2视频流中目标检测的新方法。与在压缩域中直接从MPEG-2视频流中提取提取的MV场进行处理不同,我们进行MV平滑,MV降噪,获得更鲁棒的目标信息,并通过由高斯滤波器和中值滤波器组成的级联滤波器对这些信息进行细化。因此,目标检测算法能够更准确地检测出目标。我们将我们提出的系统的性能与流行和常用的空间滤波器处理技术进行了比较:中值滤波器、均值滤波器、高斯滤波器和无滤波器。基于在MPEG7测试数据集上进行的实验结果以及使用标准召回率和精度指标测量的性能,使用级联滤波器的目标检测明显优于其他滤波技术。除了这些结果之外,我们还描述了我们开发的用户系统界面,用户可以在其中交互式地维护过滤器参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信