AMEO 2015: A dataset comprising AMCAT test scores, biodata details and employment outcomes of job seekers

V. Aggarwal, Shashank Srikant, Harsh Nisar
{"title":"AMEO 2015: A dataset comprising AMCAT test scores, biodata details and employment outcomes of job seekers","authors":"V. Aggarwal, Shashank Srikant, Harsh Nisar","doi":"10.1145/2888451.2892037","DOIUrl":null,"url":null,"abstract":"More than a million engineers enter the global workforce every year. A relevant question is what determines the jobs and salaries these engineers are offered right after graduation. Previous studies have shown the influence of various factors such as college reputation, grades, the field one specializes in and market conditions for specific industries. An important input which such analyses do not have is a standardized measures of job skills done at the time of completion of studies. We present here Aspiring Minds' Employability Outcomes 2015 (AMEO 2015), a unique dataset which provides engineering graduates' employment outcomes (salaries, job titles and job locations) together with standardized assessment scores in three fundamental areas - cognitive skills, technical skills and personality. Coupled with biodata information, AMEO 2015 provides an opportunity for a unique and comprehensive study of the entry level labor market. The data could be used to make an accurate salary predictor, but also understand what influences salary and job titles in the labor market. In this paper we describe the details of the dataset and discuss a spectrum of questions around meritocracy in labor markets, biases in labor selection and other prevalent market forces it can help uncover and answer. You can download the dataset at: http://research.aspiringminds.com/resources/","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2888451.2892037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

More than a million engineers enter the global workforce every year. A relevant question is what determines the jobs and salaries these engineers are offered right after graduation. Previous studies have shown the influence of various factors such as college reputation, grades, the field one specializes in and market conditions for specific industries. An important input which such analyses do not have is a standardized measures of job skills done at the time of completion of studies. We present here Aspiring Minds' Employability Outcomes 2015 (AMEO 2015), a unique dataset which provides engineering graduates' employment outcomes (salaries, job titles and job locations) together with standardized assessment scores in three fundamental areas - cognitive skills, technical skills and personality. Coupled with biodata information, AMEO 2015 provides an opportunity for a unique and comprehensive study of the entry level labor market. The data could be used to make an accurate salary predictor, but also understand what influences salary and job titles in the labor market. In this paper we describe the details of the dataset and discuss a spectrum of questions around meritocracy in labor markets, biases in labor selection and other prevalent market forces it can help uncover and answer. You can download the dataset at: http://research.aspiringminds.com/resources/
AMEO 2015:一个包含AMCAT测试分数、求职者生物数据细节和就业结果的数据集
每年有超过一百万的工程师进入全球劳动力市场。一个相关的问题是,是什么决定了这些工程师毕业后的工作和薪水。以前的研究表明,大学声誉、成绩、专业领域和特定行业的市场条件等各种因素都会对就业产生影响。这种分析所没有的一项重要投入是在完成研究时对工作技能进行标准化衡量。我们在这里展示了《2015年就业能力结果》(AMEO 2015),这是一个独特的数据集,提供了工程专业毕业生的就业结果(工资、职称和工作地点)以及三个基本领域的标准化评估分数——认知技能、技术技能和个性。结合生物数据信息,AMEO 2015为入门级劳动力市场提供了一个独特而全面的研究机会。这些数据可以用来做一个准确的工资预测器,但也了解是什么影响了劳动力市场上的工资和职位。在本文中,我们描述了数据集的细节,并讨论了围绕劳动力市场中的精英管理、劳动力选择中的偏见以及它可以帮助发现和回答的其他普遍市场力量的一系列问题。您可以从http://research.aspiringminds.com/resources/下载该数据集
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信