A lower bound for the distributed Lovász local lemma

S. Brandt, O. Fischer, J. Hirvonen, Barbara Keller, Tuomo Lempiäinen, J. Rybicki, J. Suomela, Jara Uitto
{"title":"A lower bound for the distributed Lovász local lemma","authors":"S. Brandt, O. Fischer, J. Hirvonen, Barbara Keller, Tuomo Lempiäinen, J. Rybicki, J. Suomela, Jara Uitto","doi":"10.1145/2897518.2897570","DOIUrl":null,"url":null,"abstract":"We show that any randomised Monte Carlo distributed algorithm for the Lovász local lemma requires Omega(log log n) communication rounds, assuming that it finds a correct assignment with high probability. Our result holds even in the special case of d = O(1), where d is the maximum degree of the dependency graph. By prior work, there are distributed algorithms for the Lovász local lemma with a running time of O(log n) rounds in bounded-degree graphs, and the best lower bound before our work was Omega(log* n) rounds [Chung et al. 2014].","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"386 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897518.2897570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 112

Abstract

We show that any randomised Monte Carlo distributed algorithm for the Lovász local lemma requires Omega(log log n) communication rounds, assuming that it finds a correct assignment with high probability. Our result holds even in the special case of d = O(1), where d is the maximum degree of the dependency graph. By prior work, there are distributed algorithms for the Lovász local lemma with a running time of O(log n) rounds in bounded-degree graphs, and the best lower bound before our work was Omega(log* n) rounds [Chung et al. 2014].
分布式Lovász局部引理的下界
我们证明了任何用于Lovász局部引理的随机蒙特卡罗分布式算法都需要Omega(log log n)轮通信,假设它以高概率找到正确的分配。我们的结果即使在d = O(1)的特殊情况下也成立,其中d是依赖图的最大程度。根据之前的工作,Lovász局部引理的分布式算法在有界度图中运行时间为O(log n)轮,在我们的工作之前,最好的下界是Omega(log* n)轮[Chung et al. 2014]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信