Relaxed fault estimation conditions for fuzzy systems subject to time varying actuator and sensor faults

Salama Makni, A. Hajjaji, M. Chaabane
{"title":"Relaxed fault estimation conditions for fuzzy systems subject to time varying actuator and sensor faults","authors":"Salama Makni, A. Hajjaji, M. Chaabane","doi":"10.1109/MED59994.2023.10185670","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of state and actuator/sensor fault (ASF) estimation for nonlinear systems described by Takagi-Sugeno (T-S) fuzzy models subject to external disturbances. A robust adaptive observer (RAO) is designed to estimate the system state, sensor faults and actuator faults conjointly. For the convergence analysis of all estimation errors, a fuzzy Lyapunov functional candidate combined by free weighting matrices have been constructed to obtain more relaxed results. The design conditions, taking into account the $H_{\\infty} $ performance, are formulated in terms of Linear Matrix Inequalities (LMIs). Finally, a comparative study is presented to prove the superiority of the proposed method.","PeriodicalId":270226,"journal":{"name":"2023 31st Mediterranean Conference on Control and Automation (MED)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 31st Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED59994.2023.10185670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the problem of state and actuator/sensor fault (ASF) estimation for nonlinear systems described by Takagi-Sugeno (T-S) fuzzy models subject to external disturbances. A robust adaptive observer (RAO) is designed to estimate the system state, sensor faults and actuator faults conjointly. For the convergence analysis of all estimation errors, a fuzzy Lyapunov functional candidate combined by free weighting matrices have been constructed to obtain more relaxed results. The design conditions, taking into account the $H_{\infty} $ performance, are formulated in terms of Linear Matrix Inequalities (LMIs). Finally, a comparative study is presented to prove the superiority of the proposed method.
时变致动器和传感器故障模糊系统的松弛故障估计条件
研究了受外界干扰的Takagi-Sugeno (T-S)模糊模型描述的非线性系统的状态和执行器/传感器故障估计问题。设计了鲁棒自适应观测器,用于同时估计系统状态、传感器故障和执行器故障。为了对所有估计误差进行收敛性分析,构造了一个由自由加权矩阵组合的模糊Lyapunov候选泛函,以获得更宽松的结果。考虑$H_{\infty} $性能的设计条件用线性矩阵不等式(lmi)表示。最后,通过对比研究证明了所提方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信