{"title":"Short-term hydrothermal scheduling using particle swarm optimization with constriction Factor and Inertia Weight Approach","authors":"Koustav Dasgupta, Sumit Banerjee","doi":"10.1109/ACES.2014.6808021","DOIUrl":null,"url":null,"abstract":"The paper presents Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach which is applied to determine the optimal hourly schedule of power generation in a hydrothermal power system. The objective of the hydrothermal scheduling problem is to find out the discharge of hydro plants and power generation of thermal plants to minimize the total fuel cost at a schedule horizon while satisfying various constraints. In the present work, the effects of valve point loading in the fuel cost function of the thermal plants are also considered. The developed algorithm is illustrated for a test system consisting of four hydro plants and three thermal plants. It is found that proposed particle swarm optimization with constriction factor and inertia weight factor approach (PSOCFIWA) appears to be the powerful to minimize fuel cost.","PeriodicalId":353124,"journal":{"name":"2014 First International Conference on Automation, Control, Energy and Systems (ACES)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 First International Conference on Automation, Control, Energy and Systems (ACES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACES.2014.6808021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The paper presents Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach which is applied to determine the optimal hourly schedule of power generation in a hydrothermal power system. The objective of the hydrothermal scheduling problem is to find out the discharge of hydro plants and power generation of thermal plants to minimize the total fuel cost at a schedule horizon while satisfying various constraints. In the present work, the effects of valve point loading in the fuel cost function of the thermal plants are also considered. The developed algorithm is illustrated for a test system consisting of four hydro plants and three thermal plants. It is found that proposed particle swarm optimization with constriction factor and inertia weight factor approach (PSOCFIWA) appears to be the powerful to minimize fuel cost.