Automatic Enhancement of Two-Dimensional Gel electrophoresis images using Denoising Autoencoder

A. Ahmed, Wessam H. El-Behaidy, A. Youssif
{"title":"Automatic Enhancement of Two-Dimensional Gel electrophoresis images using Denoising Autoencoder","authors":"A. Ahmed, Wessam H. El-Behaidy, A. Youssif","doi":"10.1109/ICCES48960.2019.9068175","DOIUrl":null,"url":null,"abstract":"Image denoising is an important preprocessing step in two-dimensional gel electrophoresis (2-DGE) that strongly affect spot detection or pixel-based methods. Denoising autoen-coders (DAE) is a new approach in deep learning used in image denoising that has a challenging performance. In this study, DAE technique is applied on 2-DGE images motivated by its ability to learn a robust representation to partially corrupted input. DAE is applied on over than 300 real gels got from LEeB 2-D PAGE database. To validate the efficiency of this technique three indicators are used; Signal-to-noise ratio (SNR), False discovery rate (FDR) and spot efficiency. The average results before denoising are 0.6332 for SNR and 71.05 for spot efficiency. Whereas, the average results after DAE are 61.3317 for SNR, 99.9944 for FDR and 88.4 for spot efficiency. Moreover, DAE outperforms the denoising wavelet by 1.75 %.","PeriodicalId":136643,"journal":{"name":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES48960.2019.9068175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Image denoising is an important preprocessing step in two-dimensional gel electrophoresis (2-DGE) that strongly affect spot detection or pixel-based methods. Denoising autoen-coders (DAE) is a new approach in deep learning used in image denoising that has a challenging performance. In this study, DAE technique is applied on 2-DGE images motivated by its ability to learn a robust representation to partially corrupted input. DAE is applied on over than 300 real gels got from LEeB 2-D PAGE database. To validate the efficiency of this technique three indicators are used; Signal-to-noise ratio (SNR), False discovery rate (FDR) and spot efficiency. The average results before denoising are 0.6332 for SNR and 71.05 for spot efficiency. Whereas, the average results after DAE are 61.3317 for SNR, 99.9944 for FDR and 88.4 for spot efficiency. Moreover, DAE outperforms the denoising wavelet by 1.75 %.
基于去噪自编码器的二维凝胶电泳图像自动增强
图像去噪是二维凝胶电泳(2-DGE)中一个重要的预处理步骤,它对斑点检测或基于像素的方法有很大的影响。自动编码去噪(DAE)是深度学习中用于图像去噪的一种新方法,其性能具有挑战性。在本研究中,DAE技术被应用于2-DGE图像,其动机是它能够学习部分损坏输入的鲁棒表示。DAE应用于从LEeB 2-D PAGE数据库中获得的300多种真实凝胶。为了验证该技术的效率,使用了三个指标;信噪比(SNR),错误发现率(FDR)和点效率。去噪前信噪比均值为0.6332,点效率均值为71.05。而DAE后的平均结果信噪比为61.3317,FDR为99.9944,spot efficiency为88.4。此外,DAE的降噪效果比小波降噪效果好1.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信