Method for calculating stress evolution in glass-metal composite taking into account structural and mechanical relaxation processes

O. Lyubimova, M. A. Barbotko
{"title":"Method for calculating stress evolution in glass-metal composite taking into account structural and mechanical relaxation processes","authors":"O. Lyubimova, M. A. Barbotko","doi":"10.7242/1999-6691/2019.12.2.19","DOIUrl":null,"url":null,"abstract":"Исследуются технологические режимы отжига слоистого стеклометаллического композиционного материала – стеклометаллокомпозита, которые включают нагрев до температуры размягчения стекла и последующее охлаждение с отжигом. Стеклометаллокомпозит цилиндрической формы с наружным металлическим и внутренним стеклянным сплошными цилиндрами используется как модельный образец при экспериментальных исследованиях сильно сжатых хрупких горных пород. Рассматривается математическая модель эволюции технологических и остаточных напряжений при его отжиге. Сложность при моделировании обусловлена процессом стеклования в стекле и упругопластичным поведением металла. Структурные и механические релаксационные процессы в стекле рассчитываются по методу Тула–Нарайсвами–Мойнихана–Мазурина, который основан на представлении о структурной температуре как дополнительном параметре, характеризующем состояние стекла, и принципе суперпозиции Больцмана–Вольтерры. Учитывается зависимость вязкости и коэффициента линейного температурного расширения от структурной температуры. Для металлического цилиндра упругое состояние в пространстве напряжений ограничено поверхностью предельного состояния Мизеса. На границе соединения стекла и металла выполняется условие идеального контакта. В работе предлагается конечно-разностная схема расчета структурных изменений и технологических напряжений в композите во всем интервале температурной обработки после нагрева. Для оценки точности предложенного алгоритма расчетов находилось аналитическое решение задачи с ядром Максвелла при отсутствии температурно-временной аналогии в стекле и упругого деформирования металлического слоя. Приведены расчеты технологических и остаточных напряжений в стеклометаллокомпозите, изготовленном из боросиликатного стекла и малоуглеродистой стали, при различных температурных режимах отжига. Предложенная математическая модель и метод расчета могут быть полезными, например, при расчетах остаточных напряжений при нанесении стеклянных покрытий на металлические трубы.","PeriodicalId":273064,"journal":{"name":"Computational Continuum Mechanics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Continuum Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7242/1999-6691/2019.12.2.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Исследуются технологические режимы отжига слоистого стеклометаллического композиционного материала – стеклометаллокомпозита, которые включают нагрев до температуры размягчения стекла и последующее охлаждение с отжигом. Стеклометаллокомпозит цилиндрической формы с наружным металлическим и внутренним стеклянным сплошными цилиндрами используется как модельный образец при экспериментальных исследованиях сильно сжатых хрупких горных пород. Рассматривается математическая модель эволюции технологических и остаточных напряжений при его отжиге. Сложность при моделировании обусловлена процессом стеклования в стекле и упругопластичным поведением металла. Структурные и механические релаксационные процессы в стекле рассчитываются по методу Тула–Нарайсвами–Мойнихана–Мазурина, который основан на представлении о структурной температуре как дополнительном параметре, характеризующем состояние стекла, и принципе суперпозиции Больцмана–Вольтерры. Учитывается зависимость вязкости и коэффициента линейного температурного расширения от структурной температуры. Для металлического цилиндра упругое состояние в пространстве напряжений ограничено поверхностью предельного состояния Мизеса. На границе соединения стекла и металла выполняется условие идеального контакта. В работе предлагается конечно-разностная схема расчета структурных изменений и технологических напряжений в композите во всем интервале температурной обработки после нагрева. Для оценки точности предложенного алгоритма расчетов находилось аналитическое решение задачи с ядром Максвелла при отсутствии температурно-временной аналогии в стекле и упругого деформирования металлического слоя. Приведены расчеты технологических и остаточных напряжений в стеклометаллокомпозите, изготовленном из боросиликатного стекла и малоуглеродистой стали, при различных температурных режимах отжига. Предложенная математическая модель и метод расчета могут быть полезными, например, при расчетах остаточных напряжений при нанесении стеклянных покрытий на металлические трубы.
考虑结构和机械松弛过程的玻璃金属复合材料应力演化计算方法
研究玻璃金属复合材料的技术退火模式——玻璃金属复合材料,包括加热到软化的温度,然后冷却到退火。玻璃金属复合材料,外用金属和内部玻璃连续体,被用作模型模型,用于高度压缩脆弱岩石的实验试验。这是一种数学模型,用来描述技术和残留应力的进化。模型的复杂性是由于玻璃的玻璃化过程和金属的弹性塑性行为造成的。玻璃的结构和机械松弛过程是根据图拉-纳里斯瓦米-莫伊尼汉-马祖里纳的方法计算的,该方法基于对结构温度作为玻璃状况的补充参数以及博尔兹曼-沃尔泰拉的超位置原理。考虑到粘度和线性膨胀系数与结构温度的关系。对于一个金属圆柱体来说,应力空间中的弹性状态受到密西根极限状态表面的限制。在玻璃和金属的边界上,完美接触的条件得到了满足。当然,工作提供了一个不同的方案来计算作曲家在加热后的所有温度处理间隔内的结构变化和技术电压。为了评估拟议的计算算法的准确性,有一个分析问题的解决方案,麦克斯韦核心没有温度时间类比,也没有金属层的弹性变形。在不同的退火模式下,用硅酸盐玻璃和低碳钢制成的玻璃和残留电压计算。提出的数学模型和计算方法可能有用,例如,在计算玻璃涂层到金属管道的剩余电压时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信