Nonlinear Fault-tolerant Model Predictive Control Strategy for Industrial Processes

Emanuel Bernardi, E. J. Adam
{"title":"Nonlinear Fault-tolerant Model Predictive Control Strategy for Industrial Processes","authors":"Emanuel Bernardi, E. J. Adam","doi":"10.23919/AADECA49780.2020.9301630","DOIUrl":null,"url":null,"abstract":"This short paper presents a strategy to tolerate the income of additive faults in nonlinear chemical processes. For that, an observed-based fault detection and diagnosis scheme is implemented to generate an early and detailed fault information. Then, this valuable knowledge is used to compensate the effects induced by actuators and sensors faults throughout the use of an integrated optimization-based estimation and model predictive control scheme, which allows to track a reference even in presence of faults. A simulation based on a typical chemical industrial process, the highly non-linear continuous stirred tank reactor, is addressed to illustrate the design process and the performance of such approach.","PeriodicalId":127488,"journal":{"name":"2020 Argentine Conference on Automatic Control (AADECA)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Argentine Conference on Automatic Control (AADECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AADECA49780.2020.9301630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This short paper presents a strategy to tolerate the income of additive faults in nonlinear chemical processes. For that, an observed-based fault detection and diagnosis scheme is implemented to generate an early and detailed fault information. Then, this valuable knowledge is used to compensate the effects induced by actuators and sensors faults throughout the use of an integrated optimization-based estimation and model predictive control scheme, which allows to track a reference even in presence of faults. A simulation based on a typical chemical industrial process, the highly non-linear continuous stirred tank reactor, is addressed to illustrate the design process and the performance of such approach.
工业过程非线性容错模型预测控制策略
本文提出了一种非线性化学过程中可加性故障的容错策略。为此,采用基于观测的故障检测诊断方案,生成早期、详细的故障信息。然后,使用基于集成优化的估计和模型预测控制方案,这些有价值的知识用于补偿由执行器和传感器故障引起的影响,即使存在故障也可以跟踪参考。以典型化工过程为例,对高度非线性连续搅拌槽式反应器进行了仿真,说明了该方法的设计过程和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信