Mohamed Abdel-Zaher, Mustafa Hisham, Retaj Yousri, M. Darweesh
{"title":"Light-Weight Convolutional Neural Network For Fire Detection","authors":"Mohamed Abdel-Zaher, Mustafa Hisham, Retaj Yousri, M. Darweesh","doi":"10.1109/ICEEM52022.2021.9480378","DOIUrl":null,"url":null,"abstract":"Fire disasters damage the economy across the globe and cause many casualties among civilians and firefighters. In this paper, a deep learning architecture based on the convolutional neural network (CNN) is proposed to detect fires efficiently. We trained the network on 9247, picked high-resolution images containing fire and other ones without any fire, and investigated the effect of CNN depth on its classification accuracy. In this proposed work, we achieved 98% accuracy on the testing set, which is so far better than the previous state-of-the-art and will eventually minimize fire disasters and reduce the damage caused by human resources.","PeriodicalId":352371,"journal":{"name":"2021 International Conference on Electronic Engineering (ICEEM)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electronic Engineering (ICEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEM52022.2021.9480378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fire disasters damage the economy across the globe and cause many casualties among civilians and firefighters. In this paper, a deep learning architecture based on the convolutional neural network (CNN) is proposed to detect fires efficiently. We trained the network on 9247, picked high-resolution images containing fire and other ones without any fire, and investigated the effect of CNN depth on its classification accuracy. In this proposed work, we achieved 98% accuracy on the testing set, which is so far better than the previous state-of-the-art and will eventually minimize fire disasters and reduce the damage caused by human resources.