Large-scale exploratory analysis, cleaning, and modeling for event detection in real-world power systems data

R. Hafen, Tara D. Gibson, K. K. Dam, T. Critchlow
{"title":"Large-scale exploratory analysis, cleaning, and modeling for event detection in real-world power systems data","authors":"R. Hafen, Tara D. Gibson, K. K. Dam, T. Critchlow","doi":"10.1145/2536780.2536783","DOIUrl":null,"url":null,"abstract":"In this paper, we present an approach to large-scale data analysis, Divide and Recombine (D&R), and describe a hardware and software implementation that supports this approach. We then illustrate the use of D&R on large-scale power systems sensor data to perform initial exploration, discover multiple data integrity issues, build and validate algorithms to filter bad data, and construct statistical event detection algorithms. This paper also reports on experiences using a non-traditional Hadoop distributed computing setup on top of a HPC computing cluster.","PeriodicalId":153844,"journal":{"name":"HiPCNA-PG '13","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HiPCNA-PG '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2536780.2536783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present an approach to large-scale data analysis, Divide and Recombine (D&R), and describe a hardware and software implementation that supports this approach. We then illustrate the use of D&R on large-scale power systems sensor data to perform initial exploration, discover multiple data integrity issues, build and validate algorithms to filter bad data, and construct statistical event detection algorithms. This paper also reports on experiences using a non-traditional Hadoop distributed computing setup on top of a HPC computing cluster.
大规模探索性分析,清洗和建模事件检测在现实世界的电力系统数据
在本文中,我们提出了一种大规模数据分析方法,即分割和重组(D&R),并描述了支持该方法的硬件和软件实现。然后,我们说明了在大规模电力系统传感器数据上使用D&R来执行初始探索,发现多个数据完整性问题,构建和验证过滤不良数据的算法,并构建统计事件检测算法。本文还报告了在HPC计算集群之上使用非传统Hadoop分布式计算设置的经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信