{"title":"Design and analysis of a hierarchical scalable photonic architecture","authors":"P. Dowd, K. Bogineni, K. A. Aly, J. A. Perreault","doi":"10.1109/HPDC.1993.263831","DOIUrl":null,"url":null,"abstract":"This paper introduces a hierarchical optical structure for processor interconnection and evaluates its performance. The architecture is based on wavelength division multiplexing (WDM) which enables multiple multi-access channels to be realized on a single optical fiber. The objective of the hierarchical architecture is to achieve scalability yet avoid the requirement of multiple wavelength tunable devices per node as with the WDM-based hypercube interconnection scheme. Furthermore, single-hop communication is achieved: a packet remains in the optical form from source to destination and does not require cross dimensional intermediate routing. The wavelength multiplexed hierarchical structure features wavelength channel re-use at each level, allowing scalability to very large system sizes. It employs acousto-optic tunable filters in conjunction with passive couplers to partition the traffic between different levels of the hierarchy without electronic intervention. A significant advantage of the proposed structure is its ability to dynamically vary the bandwidth provided to different levels of the hierarchy. The architecture is compared to a wavelength-flat architecture in terms of physical and performance scalability.<<ETX>>","PeriodicalId":226280,"journal":{"name":"[1993] Proceedings The 2nd International Symposium on High Performance Distributed Computing","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings The 2nd International Symposium on High Performance Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPDC.1993.263831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper introduces a hierarchical optical structure for processor interconnection and evaluates its performance. The architecture is based on wavelength division multiplexing (WDM) which enables multiple multi-access channels to be realized on a single optical fiber. The objective of the hierarchical architecture is to achieve scalability yet avoid the requirement of multiple wavelength tunable devices per node as with the WDM-based hypercube interconnection scheme. Furthermore, single-hop communication is achieved: a packet remains in the optical form from source to destination and does not require cross dimensional intermediate routing. The wavelength multiplexed hierarchical structure features wavelength channel re-use at each level, allowing scalability to very large system sizes. It employs acousto-optic tunable filters in conjunction with passive couplers to partition the traffic between different levels of the hierarchy without electronic intervention. A significant advantage of the proposed structure is its ability to dynamically vary the bandwidth provided to different levels of the hierarchy. The architecture is compared to a wavelength-flat architecture in terms of physical and performance scalability.<>