Quality Metrics for Symmetric Graph Drawings *

A. Meidiana, Seok-Hee Hong, P. Eades, D. Keim
{"title":"Quality Metrics for Symmetric Graph Drawings *","authors":"A. Meidiana, Seok-Hee Hong, P. Eades, D. Keim","doi":"10.1109/PacificVis48177.2020.1022","DOIUrl":null,"url":null,"abstract":"In this paper, we present a framework for quality metrics that measure symmetry, that is, how faithfully a drawing of a graph displays the ground truth geometric automorphisms as symmetries. The quality metrics are based on group theory as well as geometry. More specifically, we introduce two types of symmetry quality metrics for displaying: (1) a single geometric automorphism as a symmetry (axial or rotational) and (2) a group of geometric automorphisms (cyclic or dihedral). We also present algorithms to compute the symmetry quality metrics in O(n log n) time. We validate our symmetry quality metrics using deformation experiments. We then use the metrics to evaluate existing graph layouts to compare how faithfully they display geometric automorphisms of a graph as symmetries.","PeriodicalId":322092,"journal":{"name":"2020 IEEE Pacific Visualization Symposium (PacificVis)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis48177.2020.1022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we present a framework for quality metrics that measure symmetry, that is, how faithfully a drawing of a graph displays the ground truth geometric automorphisms as symmetries. The quality metrics are based on group theory as well as geometry. More specifically, we introduce two types of symmetry quality metrics for displaying: (1) a single geometric automorphism as a symmetry (axial or rotational) and (2) a group of geometric automorphisms (cyclic or dihedral). We also present algorithms to compute the symmetry quality metrics in O(n log n) time. We validate our symmetry quality metrics using deformation experiments. We then use the metrics to evaluate existing graph layouts to compare how faithfully they display geometric automorphisms of a graph as symmetries.
对称图形绘图的质量指标*
在本文中,我们提出了一个衡量对称的质量度量的框架,即一个图的绘制如何忠实地显示基本真几何自同构为对称。质量度量是基于群论和几何。更具体地说,我们引入了两种类型的对称质量度量来显示:(1)单个几何自同构作为对称(轴向或旋转)和(2)一组几何自同构(循环或二面体)。我们还提出了在O(n log n)时间内计算对称质量度量的算法。我们用变形实验验证了我们的对称质量度量。然后,我们使用度量来评估现有的图形布局,以比较它们如何忠实地将图形的几何自同构显示为对称。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信