Development of opened-network data envelopment analysis models under uncertainty

H. Hosseini-Nasab, V. Ettehadi
{"title":"Development of opened-network data envelopment analysis models under uncertainty","authors":"H. Hosseini-Nasab, V. Ettehadi","doi":"10.3934/jimo.2022027","DOIUrl":null,"url":null,"abstract":"Efficiency evaluation is a very important and key issue in competitive conditions. Organizations and companies face various uncertainties, and this makes it extremely difficult and complex to evaluate their efficiency. In this research, opened-network data envelopment analysis models have been developed in uncertain space for three uncertain states, including: uncertain outputs, uncertain inputs, and simultaneous uncertain inputs and outputs. The proposed models have been used to evaluate the efficiency of 10 two-stage processes, seller and buyer in a supply chain, and the impact of data uncertainty is examined. The results obtained from the developed models have been compared with the results of traditional DEA network models. The validity and accuracy of the developed models have also been examined. The results have shown that the reliability of the proposed models is higher than the traditional DEA network model. Also, by examining the efficiency of decision-making units in different conditions of data uncertainty and deviations, it was determined that the greater the range of this deviation, the lower the efficiency score of different units will be, which is consistent with reality.","PeriodicalId":347719,"journal":{"name":"Journal of Industrial & Management Optimization","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial & Management Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jimo.2022027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Efficiency evaluation is a very important and key issue in competitive conditions. Organizations and companies face various uncertainties, and this makes it extremely difficult and complex to evaluate their efficiency. In this research, opened-network data envelopment analysis models have been developed in uncertain space for three uncertain states, including: uncertain outputs, uncertain inputs, and simultaneous uncertain inputs and outputs. The proposed models have been used to evaluate the efficiency of 10 two-stage processes, seller and buyer in a supply chain, and the impact of data uncertainty is examined. The results obtained from the developed models have been compared with the results of traditional DEA network models. The validity and accuracy of the developed models have also been examined. The results have shown that the reliability of the proposed models is higher than the traditional DEA network model. Also, by examining the efficiency of decision-making units in different conditions of data uncertainty and deviations, it was determined that the greater the range of this deviation, the lower the efficiency score of different units will be, which is consistent with reality.
不确定条件下开放网络数据包络分析模型的建立
在竞争条件下,效率评价是一个非常重要和关键的问题。组织和公司面临各种不确定性,这使得评估其效率变得极其困难和复杂。本研究在不确定空间中建立了三种不确定状态的开放网络数据包络分析模型,包括:不确定输出、不确定输入和不确定输入与输出同时存在。所提出的模型已被用于评估供应链中10个两阶段过程的效率,并检查了数据不确定性的影响。将所建立的模型与传统DEA网络模型的结果进行了比较。本文还对所建立模型的有效性和准确性进行了检验。结果表明,该模型的可靠性高于传统的DEA网络模型。同时,通过考察不同数据不确定性和偏差条件下决策单元的效率,确定该偏差范围越大,不同单元的效率得分越低,这与实际情况是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信