The concurrent game semantics of Probabilistic PCF

Simon Castellan, P. Clairambault, Hugo Paquet, G. Winskel
{"title":"The concurrent game semantics of Probabilistic PCF","authors":"Simon Castellan, P. Clairambault, Hugo Paquet, G. Winskel","doi":"10.1145/3209108.3209187","DOIUrl":null,"url":null,"abstract":"We define a new games model of Probabilistic PCF (PPCF) by enriching thin concurrent games with symmetry, recently introduced by Castellan et al, with probability. This model supports two interpretations of PPCF, one sequential and one parallel. We make the case for this model by exploiting the causal structure of probabilistic concurrent strategies. First, we show that the strategies obtained from PPCF programs have a deadlock-free interaction, and therefore deduce that there is an interpretation-preserving functor from our games to the probabilistic relational model recently proved fully abstract by Ehrhard et al. It follows that our model is intensionally fully abstract. Finally, we propose a definition of probabilistic innocence and prove a finite definability result, leading to a second (independent) proof of full abstraction.","PeriodicalId":389131,"journal":{"name":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209108.3209187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

We define a new games model of Probabilistic PCF (PPCF) by enriching thin concurrent games with symmetry, recently introduced by Castellan et al, with probability. This model supports two interpretations of PPCF, one sequential and one parallel. We make the case for this model by exploiting the causal structure of probabilistic concurrent strategies. First, we show that the strategies obtained from PPCF programs have a deadlock-free interaction, and therefore deduce that there is an interpretation-preserving functor from our games to the probabilistic relational model recently proved fully abstract by Ehrhard et al. It follows that our model is intensionally fully abstract. Finally, we propose a definition of probabilistic innocence and prove a finite definability result, leading to a second (independent) proof of full abstraction.
概率PCF的并发博弈语义
我们定义了一个新的博弈模型——概率PCF (PPCF),通过将Castellan等人最近引入的具有对称性的薄并发博弈用概率进行充实。该模型支持PPCF的两种解释,一种是顺序的,一种是并行的。我们通过利用概率并发策略的因果结构来证明这个模型。首先,我们证明了从PPCF程序中获得的策略具有无死锁的相互作用,并因此推断出从我们的博弈到最近被Ehrhard等人证明完全抽象的概率关系模型存在一个解释保留函子。由此可见,我们的模型是完全抽象的。最后,我们提出了一个概率无性的定义,并证明了一个有限可定义性的结果,从而得到了完全抽象的第二个(独立的)证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信