Uplink-downlink duality for integer-forcing

Wenbo He, B. Nazer, S. Shamai
{"title":"Uplink-downlink duality for integer-forcing","authors":"Wenbo He, B. Nazer, S. Shamai","doi":"10.1109/ISIT.2014.6875293","DOIUrl":null,"url":null,"abstract":"Consider a MIMO uplink channel with channel matrix H and a MIMO downlink channel with channel matrix Hτ. It is well-known that any rate tuple that is achievable on the uplink is also achievable on the downlink under the same total power constraint, i.e., there is an uplink-downlink duality relationship. In this paper, we consider the integer-forcing strategy, in which users steer the channel towards an integer-valued effective channel matrix so that the receiver(s) can decode integer-linear combinations of the transmitted codewords. Recent efforts have demonstrated the benefits of this strategy for uplink, downlink, and interference alignment scenarios. Here, we establish that uplink-downlink duality holds for integer-forcing. Specifically, in the uplink, L transmitters communicate over channel matrix H to an L-antenna receiver with target integer matrix A. In the downlink, an L-antenna transmitter communicates over channel matrix Hτ to L single-antenna receivers with target integer matrix Aτ. We show that any computation rate tuple that is achievable in the uplink is achievable for the same total power in the downlink and vice versa.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6875293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Consider a MIMO uplink channel with channel matrix H and a MIMO downlink channel with channel matrix Hτ. It is well-known that any rate tuple that is achievable on the uplink is also achievable on the downlink under the same total power constraint, i.e., there is an uplink-downlink duality relationship. In this paper, we consider the integer-forcing strategy, in which users steer the channel towards an integer-valued effective channel matrix so that the receiver(s) can decode integer-linear combinations of the transmitted codewords. Recent efforts have demonstrated the benefits of this strategy for uplink, downlink, and interference alignment scenarios. Here, we establish that uplink-downlink duality holds for integer-forcing. Specifically, in the uplink, L transmitters communicate over channel matrix H to an L-antenna receiver with target integer matrix A. In the downlink, an L-antenna transmitter communicates over channel matrix Hτ to L single-antenna receivers with target integer matrix Aτ. We show that any computation rate tuple that is achievable in the uplink is achievable for the same total power in the downlink and vice versa.
整数强制的上行-下行对偶性
考虑一个信道矩阵为H的MIMO上行信道和一个信道矩阵为Hτ的MIMO下行信道。众所周知,在相同的总功率约束下,在上行链路上可以实现的任何速率元组在下行链路上也可以实现,即存在上行链路-下行链路对偶关系。在本文中,我们考虑了整数强制策略,在该策略中,用户将信道引导到一个整数值的有效信道矩阵,以便接收器可以解码传输码字的整数线性组合。最近的努力已经证明了这种策略在上行链路、下行链路和干扰校准场景中的好处。在这里,我们建立了上行链路-下行链路对偶性对于整数强迫是成立的。具体而言,在上行链路中,L个发射机通过信道矩阵H与目标整数矩阵a的L-天线接收机通信。在下行链路中,L-天线发射机通过信道矩阵Hτ与目标整数矩阵Aτ的L个单天线接收机通信。我们表明,在上行链路中可以实现的任何计算速率元组在下行链路中可以实现相同的总功率,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信