Monte Carlo Method-Based Clustering Analysis Applied for Robust State Estimation and Data Debugging of Power Systems

Jeu-Min Lin, Shyh-Jier Huang
{"title":"Monte Carlo Method-Based Clustering Analysis Applied for Robust State Estimation and Data Debugging of Power Systems","authors":"Jeu-Min Lin, Shyh-Jier Huang","doi":"10.1109/ISAP.2007.4441617","DOIUrl":null,"url":null,"abstract":"This paper presents a robust method for power system state estimation along with a statistical technique of data debugging. In the estimation process, an exponential function is utilized to modify the variances of measurements in anticipation of enhancing the estimation performance and improving the convergence characteristics. Besides, with the aid of Monte Carlo method (MCM)-based clustering analysis, those bad data can be effectively identified from the set of raw measurements. To validate the effectiveness of the proposed approach, this method has been tested under different scenarios. Test results help confirm the feasibility of the method for the applications considered.","PeriodicalId":320068,"journal":{"name":"2007 International Conference on Intelligent Systems Applications to Power Systems","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Intelligent Systems Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2007.4441617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a robust method for power system state estimation along with a statistical technique of data debugging. In the estimation process, an exponential function is utilized to modify the variances of measurements in anticipation of enhancing the estimation performance and improving the convergence characteristics. Besides, with the aid of Monte Carlo method (MCM)-based clustering analysis, those bad data can be effectively identified from the set of raw measurements. To validate the effectiveness of the proposed approach, this method has been tested under different scenarios. Test results help confirm the feasibility of the method for the applications considered.
基于蒙特卡罗方法的聚类分析在电力系统鲁棒状态估计和数据调试中的应用
本文提出了一种鲁棒的电力系统状态估计方法以及数据调试的统计技术。在估计过程中,利用指数函数对测量值的方差进行修正,以提高估计性能和收敛性。此外,借助基于蒙特卡罗方法(MCM)的聚类分析,可以有效地从原始测量集中识别出不良数据。为了验证所提出的方法的有效性,在不同的场景下对该方法进行了测试。测试结果有助于证实该方法对所考虑的应用的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信