Pipelined on-chip bus architecture with distributed self-timed control

J. Plosila, P. Liljeberg, J. Isoaho
{"title":"Pipelined on-chip bus architecture with distributed self-timed control","authors":"J. Plosila, P. Liljeberg, J. Isoaho","doi":"10.1109/SCS.2003.1226997","DOIUrl":null,"url":null,"abstract":"This paper describes an on-chip bus architecture targeted for the globally asynchronous locally synchronous system-on-chip design strategy. The proposed pipelined bus structure is composed of asynchronously interacting segments which can operate in parallel. The bus is segmented using transfer stages which partition bus into a set of point-to-point interconnects. Self-timed arbitration and control is distributed among the pipelined stages to enable parallel operation of distinct segments, to prevent problems present in a globally clocked system, and to increase design modularity. In a 0.18 μm technology, each bus segment is capable of transferring data at a maximum throughput of 1.2 giga data items per second concurrently in both directions.","PeriodicalId":375963,"journal":{"name":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCS.2003.1226997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper describes an on-chip bus architecture targeted for the globally asynchronous locally synchronous system-on-chip design strategy. The proposed pipelined bus structure is composed of asynchronously interacting segments which can operate in parallel. The bus is segmented using transfer stages which partition bus into a set of point-to-point interconnects. Self-timed arbitration and control is distributed among the pipelined stages to enable parallel operation of distinct segments, to prevent problems present in a globally clocked system, and to increase design modularity. In a 0.18 μm technology, each bus segment is capable of transferring data at a maximum throughput of 1.2 giga data items per second concurrently in both directions.
流水线片上总线结构与分布式自定时控制
针对全局异步局部同步的片上系统设计策略,提出了一种片上总线结构。所提出的流水线总线结构由可并行运行的异步交互段组成。总线使用传输级进行分段,传输级将总线划分为一组点对点互连。自定时仲裁和控制分布在流水线阶段之间,以实现不同部分的并行操作,防止全球时钟系统中出现的问题,并增加设计模块化。在0.18 μm的技术中,每个总线段能够在两个方向上以每秒1.2千兆数据项的最大吞吐量同时传输数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信