A statistical framework for the registration of 3D knee implant components to single-plane X-ray images

Jeroen Hermans, J. Bellemans, F. Maes, D. Vandermeulen, P. Suetens
{"title":"A statistical framework for the registration of 3D knee implant components to single-plane X-ray images","authors":"Jeroen Hermans, J. Bellemans, F. Maes, D. Vandermeulen, P. Suetens","doi":"10.1109/CVPRW.2008.4563004","DOIUrl":null,"url":null,"abstract":"Registration of 3D knee implant components to single-plane X-ray image sequences provides insight into implanted knee kinematics. In this paper a maximum likelihood approach is proposed to align the pose-related occluding contour of an object with edge segments extracted from a single-plane X-ray image. This leads to an expectation maximization algorithm which simultaneously determines the objectpsilas pose, estimates point correspondences and rejects outlier points from the registration process. Considering (nearly) planar-symmetrical objects, the method is extended in order to simultaneously estimate two symmetrical object poses which both align the corresponding occluding contours with 2D edge information. The algorithmpsilas capacity to generate accurate pose estimates and the necessity of determining both symmetrical poses when aligning (nearly) planar-symmetrical objects will be demonstrated in the context of automated registration of knee implant components to simulated and real single-plane X-ray images.","PeriodicalId":102206,"journal":{"name":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2008.4563004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Registration of 3D knee implant components to single-plane X-ray image sequences provides insight into implanted knee kinematics. In this paper a maximum likelihood approach is proposed to align the pose-related occluding contour of an object with edge segments extracted from a single-plane X-ray image. This leads to an expectation maximization algorithm which simultaneously determines the objectpsilas pose, estimates point correspondences and rejects outlier points from the registration process. Considering (nearly) planar-symmetrical objects, the method is extended in order to simultaneously estimate two symmetrical object poses which both align the corresponding occluding contours with 2D edge information. The algorithmpsilas capacity to generate accurate pose estimates and the necessity of determining both symmetrical poses when aligning (nearly) planar-symmetrical objects will be demonstrated in the context of automated registration of knee implant components to simulated and real single-plane X-ray images.
三维膝关节植入部件与单平面x射线图像配准的统计框架
注册三维膝关节植入部件到单平面x射线图像序列提供洞察植入膝关节运动学。本文提出了一种最大似然方法,将物体的位姿相关遮挡轮廓与从单平面x射线图像中提取的边缘段对齐。这导致了期望最大化算法,该算法同时确定目标的姿态,估计点对应并从配准过程中拒绝异常点。针对(接近)平面对称的目标,对该方法进行了扩展,以便同时估计两个对称的目标位姿,这两个对称的目标位姿都将相应的遮挡轮廓与二维边缘信息对齐。该算法能够产生准确的姿态估计,并在对齐(接近)平面对称物体时确定对称姿态的必要性,将在膝关节植入部件自动注册到模拟和真实的单平面x射线图像的背景下进行演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信