Catfish particle swarm optimization

Li-Yeh Chuang, S. Tsai, Cheng-Hong Yang
{"title":"Catfish particle swarm optimization","authors":"Li-Yeh Chuang, S. Tsai, Cheng-Hong Yang","doi":"10.1109/SIS.2008.4668277","DOIUrl":null,"url":null,"abstract":"Catfish particle swarm optimization (CatfishPSO) is a novel optimization algorithm proposed in this paper. The mechanism is dependent on the incorporation of a catfish particle into the linearly decreasing weight particle swarm optimization (LDWPSO). The introduced catfish particle improves the performance of LDWPSO. Unlike other ordinary particles, the catfish particles will initialize a new search from the extreme points of the search space when the gbest fitness value (global optimum at each iteration) has not been changed for a given time, which results in further opportunities to find better solutions for the swarm by guiding the whole swarm to promising new regions of the search space, and accelerating convergence. In our experiment, CatfishPSO, LDWPSO and other improved PSO procedures were extensively compared on three benchmark test functions with 10, 20 and 30 different dimensions. Experimental results indicate that CatfishPSO achieves better performance than LDWPSO procedure and other improved PSO algorithms from the literature.","PeriodicalId":178251,"journal":{"name":"2008 IEEE Swarm Intelligence Symposium","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Swarm Intelligence Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2008.4668277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

Catfish particle swarm optimization (CatfishPSO) is a novel optimization algorithm proposed in this paper. The mechanism is dependent on the incorporation of a catfish particle into the linearly decreasing weight particle swarm optimization (LDWPSO). The introduced catfish particle improves the performance of LDWPSO. Unlike other ordinary particles, the catfish particles will initialize a new search from the extreme points of the search space when the gbest fitness value (global optimum at each iteration) has not been changed for a given time, which results in further opportunities to find better solutions for the swarm by guiding the whole swarm to promising new regions of the search space, and accelerating convergence. In our experiment, CatfishPSO, LDWPSO and other improved PSO procedures were extensively compared on three benchmark test functions with 10, 20 and 30 different dimensions. Experimental results indicate that CatfishPSO achieves better performance than LDWPSO procedure and other improved PSO algorithms from the literature.
鲶鱼粒子群优化
鲶鱼粒子群优化算法(CatfishPSO)是本文提出的一种新型优化算法。该机制依赖于将鲶鱼粒子加入线性减重粒子群优化(LDWPSO)中。鲶鱼颗粒的加入提高了LDWPSO的性能。与其他普通粒子不同的是,鲶鱼粒子在给定时间内,当最佳适应度值(每次迭代的全局最优值)没有改变时,会从搜索空间的极值开始初始化新的搜索,从而通过引导整个群体进入搜索空间的有希望的新区域,从而进一步为群体找到更好的解,从而加速收敛。在我们的实验中,CatfishPSO、LDWPSO和其他改进的PSO方法在10、20和30个不同维度的三个基准测试函数上进行了广泛的比较。实验结果表明,CatfishPSO算法比LDWPSO算法和其他文献中的改进PSO算法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信