{"title":"MANTIS: Multiple Type and Attribute Index Selection using Deep Reinforcement Learning","authors":"V. Sharma, C. Dyreson, N. Flann","doi":"10.1145/3472163.3472176","DOIUrl":null,"url":null,"abstract":"DBMS performance is dependent on many parameters, such as index selection, cache size, physical layout, and data partitioning. Some combinations of these parameters can lead to optimal performance for a given workload but selecting an optimal or near-optimal combination is challenging, especially for large databases with complex workloads. Among the hundreds of parameters, index selection is arguably the most critical parameter for performance. We propose a self-administered framework, called the Multiple Type and Attribute Index Selector (MANTIS), that automatically selects near-optimal indexes. The framework advances the state-of-the-art index selection by considering both multi-attribute and multiple types of indexes within a bounded storage size constraint, a combination not previously addressed. MANTIS combines supervised and reinforcement learning, a Deep Neural Network recommends the type of index for a given workload while a Deep Q-Learning network recommends the multi-attribute aspect. MANTIS is sensitive to storage cost constraints and incorporates noisy rewards in its reward function for better performance. Our experimental evaluation shows that MANTIS outperforms the current state-of-art methods by an average of 9.53% QphH@size.","PeriodicalId":242683,"journal":{"name":"Proceedings of the 25th International Database Engineering & Applications Symposium","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Database Engineering & Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3472163.3472176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
DBMS performance is dependent on many parameters, such as index selection, cache size, physical layout, and data partitioning. Some combinations of these parameters can lead to optimal performance for a given workload but selecting an optimal or near-optimal combination is challenging, especially for large databases with complex workloads. Among the hundreds of parameters, index selection is arguably the most critical parameter for performance. We propose a self-administered framework, called the Multiple Type and Attribute Index Selector (MANTIS), that automatically selects near-optimal indexes. The framework advances the state-of-the-art index selection by considering both multi-attribute and multiple types of indexes within a bounded storage size constraint, a combination not previously addressed. MANTIS combines supervised and reinforcement learning, a Deep Neural Network recommends the type of index for a given workload while a Deep Q-Learning network recommends the multi-attribute aspect. MANTIS is sensitive to storage cost constraints and incorporates noisy rewards in its reward function for better performance. Our experimental evaluation shows that MANTIS outperforms the current state-of-art methods by an average of 9.53% QphH@size.