{"title":"Dialogue Management for Interactive API Search","authors":"Zachary Eberhart, Collin McMillan","doi":"10.26226/morressier.613b5418842293c031b5b5e8","DOIUrl":null,"url":null,"abstract":"API search involves finding components in an API that are relevant to a programming task. For example, a programmer may need a function in a C library that opens a new network connection, then another function that sends data across that connection. Unfortunately, programmers often have trouble finding the API components that they need. A strong scientific consensus is emerging towards developing interactive tool support that responds to conversational feedback, emulating the experience of asking a fellow human programmer for help. A major barrier to creating these interactive tools is implementing dialogue management for API search. Dialogue management involves determining how a system should respond to user input, such as whether to ask a clarification question or to display potential results. In this paper, we present a dialogue manager for interactive API search that considers search results and dialogue history to select efficient actions. We implement two dialogue policies: a hand-crafted policy and a policy optimized via reinforcement learning. We perform a synthetics evaluation and a human evaluation comparing the policies to a generic single-turn, top-N policy used by source code search engines.","PeriodicalId":205629,"journal":{"name":"2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26226/morressier.613b5418842293c031b5b5e8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
API search involves finding components in an API that are relevant to a programming task. For example, a programmer may need a function in a C library that opens a new network connection, then another function that sends data across that connection. Unfortunately, programmers often have trouble finding the API components that they need. A strong scientific consensus is emerging towards developing interactive tool support that responds to conversational feedback, emulating the experience of asking a fellow human programmer for help. A major barrier to creating these interactive tools is implementing dialogue management for API search. Dialogue management involves determining how a system should respond to user input, such as whether to ask a clarification question or to display potential results. In this paper, we present a dialogue manager for interactive API search that considers search results and dialogue history to select efficient actions. We implement two dialogue policies: a hand-crafted policy and a policy optimized via reinforcement learning. We perform a synthetics evaluation and a human evaluation comparing the policies to a generic single-turn, top-N policy used by source code search engines.