Performance-Portable Sparse Tensor Decomposition Kernels on Emerging Parallel Architectures.

Sean Geronimo Anderson, K. Teranishi, Daniel M. Dunlavy, Jee W. Choi
{"title":"Performance-Portable Sparse Tensor Decomposition Kernels on Emerging Parallel Architectures.","authors":"Sean Geronimo Anderson, K. Teranishi, Daniel M. Dunlavy, Jee W. Choi","doi":"10.2172/1888390","DOIUrl":null,"url":null,"abstract":"—We leverage the Kokkos library to study perfor- mance portability of parallel sparse tensor decompositions on CPU and GPU architectures. Our result shows that with a single implementation Kokkos can deliver performance comparable to hand-tuned code for simple array operations that make up tensor decomposition kernels on a wide range of CPU and GPU systems, and superior performance for the MTTKRP kernel on CPUs.","PeriodicalId":415622,"journal":{"name":"Proposed for presentation at the 2021 IEEE High Performance Extreme Computing Virtual Conference held September 20-24, 2021 in ONLINE, ONLINE.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proposed for presentation at the 2021 IEEE High Performance Extreme Computing Virtual Conference held September 20-24, 2021 in ONLINE, ONLINE.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2172/1888390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

—We leverage the Kokkos library to study perfor- mance portability of parallel sparse tensor decompositions on CPU and GPU architectures. Our result shows that with a single implementation Kokkos can deliver performance comparable to hand-tuned code for simple array operations that make up tensor decomposition kernels on a wide range of CPU and GPU systems, and superior performance for the MTTKRP kernel on CPUs.
新兴并行体系结构上性能可移植的稀疏张量分解核。
-利用Kokkos库来研究并行稀疏张量分解在CPU和GPU架构上的性能可移植性。我们的结果表明,通过单一实现,Kokkos可以提供与手动调整代码相当的性能,用于在各种CPU和GPU系统上组成张量分解内核的简单数组操作,以及CPU上的MTTKRP内核的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信