A Cluster-Based Hybrid Feature Selection Method for Defect Prediction

Fei Wang, J. Ai, Zhuoliang Zou
{"title":"A Cluster-Based Hybrid Feature Selection Method for Defect Prediction","authors":"Fei Wang, J. Ai, Zhuoliang Zou","doi":"10.1109/QRS.2019.00014","DOIUrl":null,"url":null,"abstract":"Machine learning is an effective method for software defect prediction. The performance of learning models can be affected by irrelative and redundant features. Feature selection techniques select a subset of most impactful relevant features that will result in higher accuracy and efficiency of models. This paper proposed a Cluster-based Hybrid Feature Selection method (CHIFS) for software defect prediction. A spectral cluster-based Feature Quality coefficient (FQ) was defined as a comprehensive measurement of feature relevance and redundancy. The final feature subset was iteratively selected from feature sequence ranked by FQ. The proposed CHIFS method was validated in the experiments using 3 classifiers with 15 open datasets from Promise Repository. Experimental results showed that the CHIFS method performed better than traditional methods in terms of accuracy and efficiency on a wide range of datasets.","PeriodicalId":122665,"journal":{"name":"2019 IEEE 19th International Conference on Software Quality, Reliability and Security (QRS)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS.2019.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Machine learning is an effective method for software defect prediction. The performance of learning models can be affected by irrelative and redundant features. Feature selection techniques select a subset of most impactful relevant features that will result in higher accuracy and efficiency of models. This paper proposed a Cluster-based Hybrid Feature Selection method (CHIFS) for software defect prediction. A spectral cluster-based Feature Quality coefficient (FQ) was defined as a comprehensive measurement of feature relevance and redundancy. The final feature subset was iteratively selected from feature sequence ranked by FQ. The proposed CHIFS method was validated in the experiments using 3 classifiers with 15 open datasets from Promise Repository. Experimental results showed that the CHIFS method performed better than traditional methods in terms of accuracy and efficiency on a wide range of datasets.
基于聚类的混合特征选择缺陷预测方法
机器学习是软件缺陷预测的有效方法。学习模型的性能会受到不相关和冗余特征的影响。特征选择技术选择最具影响力的相关特征子集,从而提高模型的准确性和效率。提出了一种基于聚类的混合特征选择方法(CHIFS)用于软件缺陷预测。基于光谱聚类的特征质量系数(FQ)是特征相关性和冗余度的综合度量。从特征序列中迭代选择最终的特征子集。在Promise Repository的15个开放数据集上使用3个分类器对所提出的CHIFS方法进行了实验验证。实验结果表明,在广泛的数据集上,CHIFS方法在精度和效率方面都优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信