Time dependent detection analysis for a virtual radar analysis tool

D. Tatarinov, U. Karahasanovic, Udo Schröder, Oscar Gomez
{"title":"Time dependent detection analysis for a virtual radar analysis tool","authors":"D. Tatarinov, U. Karahasanovic, Udo Schröder, Oscar Gomez","doi":"10.23919/IRS.2017.8008234","DOIUrl":null,"url":null,"abstract":"The probability of detection and the false alarm rate are the key parameters that define radar system performance. In order to obtain the best possible detection rate, while minimising false alarms, there is a need to measure and evaluate the performance of a system under development. In the case of vital signs monitoring systems, the target observation time is a very sensitive parameter. The two main unknowns are: when will the incident that we want to detect occur and how long must it be observed for a robust detection to be established. This paper shows a novel approach of so-called dynamic analysis of the detection probability for real or simulated data. This approach helps us to identify the statistical limits of the system and to find an optimum between the minimum observation time window and the maximum detection probability.","PeriodicalId":430241,"journal":{"name":"2017 18th International Radar Symposium (IRS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IRS.2017.8008234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The probability of detection and the false alarm rate are the key parameters that define radar system performance. In order to obtain the best possible detection rate, while minimising false alarms, there is a need to measure and evaluate the performance of a system under development. In the case of vital signs monitoring systems, the target observation time is a very sensitive parameter. The two main unknowns are: when will the incident that we want to detect occur and how long must it be observed for a robust detection to be established. This paper shows a novel approach of so-called dynamic analysis of the detection probability for real or simulated data. This approach helps us to identify the statistical limits of the system and to find an optimum between the minimum observation time window and the maximum detection probability.
一个基于时间的虚拟雷达检测分析工具
探测概率和虚警率是决定雷达系统性能的关键参数。为了获得最好的检出率,同时最小化假警报,有必要测量和评估正在开发的系统的性能。在生命体征监测系统中,目标观测时间是一个非常敏感的参数。两个主要的未知因素是:我们想要检测的事件何时发生,以及必须观察多长时间才能建立可靠的检测。本文提出了一种对真实或模拟数据的检测概率进行动态分析的新方法。这种方法有助于我们识别系统的统计极限,并在最小观测时间窗和最大检测概率之间找到最佳值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信