{"title":"Compressing as well as the best tiling of an image","authors":"Wee Sun Lee","doi":"10.1109/ISIT.2000.866331","DOIUrl":null,"url":null,"abstract":"We investigate the task of compressing an image by using different probability models for compressing different regions of the image. We introduce a class of probability models for images, the k-rectangular tilings of an image, that is formed by partitioning the image into k rectangular regions and generating the coefficients within each region by using a probability model selected from a finite class of N probability models. For an image of size n/spl times/n, we give a sequential probability assignment algorithm that codes the image with a code length which is within O(k log Nn/k) of the code length produced by the best probability model in the class. The algorithm has a computational complexity of O(Nn/sup 3/). An interesting subclass of the class of k-rectangular tilings is the class of tilings using rectangles whose widths are powers of two. This class is far more flexible than quadtrees and yet has a sequential probability assignment algorithm that produces a code length that is within O(k log Nn/k) of the best model in the class with a computational complexity of O(Nn/sup 2/ log n) (similar to the computational complexity of sequential probability assignment using quadtrees).","PeriodicalId":108752,"journal":{"name":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2000.866331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We investigate the task of compressing an image by using different probability models for compressing different regions of the image. We introduce a class of probability models for images, the k-rectangular tilings of an image, that is formed by partitioning the image into k rectangular regions and generating the coefficients within each region by using a probability model selected from a finite class of N probability models. For an image of size n/spl times/n, we give a sequential probability assignment algorithm that codes the image with a code length which is within O(k log Nn/k) of the code length produced by the best probability model in the class. The algorithm has a computational complexity of O(Nn/sup 3/). An interesting subclass of the class of k-rectangular tilings is the class of tilings using rectangles whose widths are powers of two. This class is far more flexible than quadtrees and yet has a sequential probability assignment algorithm that produces a code length that is within O(k log Nn/k) of the best model in the class with a computational complexity of O(Nn/sup 2/ log n) (similar to the computational complexity of sequential probability assignment using quadtrees).