The NANOGrav 15 yr Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries

G. Agazie, A. Anumarlapudi, A. Archibald, Z. Arzoumanian, P. Baker, B. B'ecsy, L. Blecha, A. Brazier, P. Brook, S. Burke-Spolaor, R. Case, J. A. Casey-Clyde, M. Charisi, S. Chatterjee, T. Cohen, J. Cordes, N. Cornish, F. Crawford, H. Cromartie, K. Crowter, M. DeCesar, P. Demorest, Matthew C. Digman, T. Dolch, B. Drachler, E. Ferrara, W. Fiore, E. Fonseca, Gabriel Freedman, N. Garver-Daniels, P. Gentile, J. Glaser, D. Good, K. Gultekin, J. Hazboun, S. Hourihane, R. Jennings, A. Johnson, Megan L. Jones, A. Kaiser, D. Kaplan, L. Kelley, M. Kerr, J. Key, N. Laal, M. Lam, W. Lamb, T. Lazio, N. Lewandowska, Tingting Liu, D. Lorimer, Jingshu Luo, R. Lynch, Chung-Pei Ma, D. Madison, A. McEwen, J. McKee, M. Mclaughlin, N. McMann, B. W. Meyers, P. Meyers, C. Mingarelli, A. Mitridate, P. Natarajan, C. Ng, D. Nice, S. Ocker, K. Olum, T. Pennucci, B. Perera, P. Petrov, N. Pol, H. Radovan, S. Ransom, P. Ray, Jo√£o Romano, S. C. Sardesai, A. Schmiedekamp, C. Schmiedekamp, K. Schmitz, B. Shapiro-Albert, X. Siemens, J. Si
{"title":"The NANOGrav 15 yr Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries","authors":"G. Agazie, A. Anumarlapudi, A. Archibald, Z. Arzoumanian, P. Baker, B. B'ecsy, L. Blecha, A. Brazier, P. Brook, S. Burke-Spolaor, R. Case, J. A. Casey-Clyde, M. Charisi, S. Chatterjee, T. Cohen, J. Cordes, N. Cornish, F. Crawford, H. Cromartie, K. Crowter, M. DeCesar, P. Demorest, Matthew C. Digman, T. Dolch, B. Drachler, E. Ferrara, W. Fiore, E. Fonseca, Gabriel Freedman, N. Garver-Daniels, P. Gentile, J. Glaser, D. Good, K. Gultekin, J. Hazboun, S. Hourihane, R. Jennings, A. Johnson, Megan L. Jones, A. Kaiser, D. Kaplan, L. Kelley, M. Kerr, J. Key, N. Laal, M. Lam, W. Lamb, T. Lazio, N. Lewandowska, Tingting Liu, D. Lorimer, Jingshu Luo, R. Lynch, Chung-Pei Ma, D. Madison, A. McEwen, J. McKee, M. Mclaughlin, N. McMann, B. W. Meyers, P. Meyers, C. Mingarelli, A. Mitridate, P. Natarajan, C. Ng, D. Nice, S. Ocker, K. Olum, T. Pennucci, B. Perera, P. Petrov, N. Pol, H. Radovan, S. Ransom, P. Ray, Jo√£o Romano, S. C. Sardesai, A. Schmiedekamp, C. Schmiedekamp, K. Schmitz, B. Shapiro-Albert, X. Siemens, J. Si","doi":"10.3847/2041-8213/ace18a","DOIUrl":null,"url":null,"abstract":"Evidence for a low-frequency stochastic gravitational-wave background has recently been reported based on analyses of pulsar timing array data. The most likely source of such a background is a population of supermassive black hole binaries, the loudest of which may be individually detected in these data sets. Here we present the search for individual supermassive black hole binaries in the NANOGrav 15 yr data set. We introduce several new techniques, which enhance the efficiency and modeling accuracy of the analysis. The search uncovered weak evidence for two candidate signals, one with a gravitational-wave frequency of ∼4 nHz, and another at ∼170 nHz. The significance of the low-frequency candidate was greatly diminished when Hellings–Downs correlations were included in the background model. The high-frequency candidate was discounted due to the lack of a plausible host galaxy, the unlikely astrophysical prior odds of finding such a source, and since most of its support comes from a single pulsar with a commensurate binary period. Finding no compelling evidence for signals from individual binary systems, we place upper limits on the strain amplitude of gravitational waves emitted by such systems. At our most sensitive frequency of 6 nHz, we place a sky-averaged 95% upper limit of 8 × 10−15 on the strain amplitude. We also calculate an exclusion volume and a corresponding effective radius, within which we can rule out the presence of black hole binaries emitting at a given frequency.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ace18a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Evidence for a low-frequency stochastic gravitational-wave background has recently been reported based on analyses of pulsar timing array data. The most likely source of such a background is a population of supermassive black hole binaries, the loudest of which may be individually detected in these data sets. Here we present the search for individual supermassive black hole binaries in the NANOGrav 15 yr data set. We introduce several new techniques, which enhance the efficiency and modeling accuracy of the analysis. The search uncovered weak evidence for two candidate signals, one with a gravitational-wave frequency of ∼4 nHz, and another at ∼170 nHz. The significance of the low-frequency candidate was greatly diminished when Hellings–Downs correlations were included in the background model. The high-frequency candidate was discounted due to the lack of a plausible host galaxy, the unlikely astrophysical prior odds of finding such a source, and since most of its support comes from a single pulsar with a commensurate binary period. Finding no compelling evidence for signals from individual binary systems, we place upper limits on the strain amplitude of gravitational waves emitted by such systems. At our most sensitive frequency of 6 nHz, we place a sky-averaged 95% upper limit of 8 × 10−15 on the strain amplitude. We also calculate an exclusion volume and a corresponding effective radius, within which we can rule out the presence of black hole binaries emitting at a given frequency.
nanogravity 15年数据集:单个超大质量黑洞双星引力波的贝叶斯极限
基于对脉冲星定时阵列数据的分析,最近报道了低频随机引力波背景的证据。这种背景最可能的来源是一群超大质量的双星黑洞,其中最大的一个可能在这些数据集中被单独探测到。在这里,我们展示了在nanogravity 15年数据集中对单个超大质量黑洞双星的搜索。介绍了几种新技术,提高了分析的效率和建模精度。搜索发现了两个候选信号的微弱证据,一个引力波频率为~ 4nhz,另一个引力波频率为~ 170 nHz。当背景模型中包含Hellings-Downs相关性时,低频候选值的重要性大大降低。由于缺乏一个可信的宿主星系,发现这样一个来源的可能性不大,而且它的大部分支持来自一个具有相应双星周期的脉冲星,因此高频候选星系被低估了。由于没有发现来自单个双星系统信号的令人信服的证据,我们对这类系统发出的引力波的应变振幅设定了上限。在我们最敏感的6赫兹频率下,我们在应变幅度上放置了8 × 10−15的天平均95%上限。我们还计算了排除体积和相应的有效半径,在此范围内,我们可以排除以给定频率发射的黑洞双星的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信