Adapting TRIBES algorithm for Traveling Salesman Problem

M. Daoudi, A. Boukra, M. Ahmed-Nacer
{"title":"Adapting TRIBES algorithm for Traveling Salesman Problem","authors":"M. Daoudi, A. Boukra, M. Ahmed-Nacer","doi":"10.1109/ISPS.2011.5898889","DOIUrl":null,"url":null,"abstract":"Metaheuristics constitute an important alternative in solving NP-Hard combinatorial optimization problems. Unfortunately, many parameters have to be tuned for any metaheuristic, and their values may have a great influence on the efficiency and effectiveness of the search. The exploration of an optimal combination of such values may be difficult and big time consuming. Clerc et al have defined a parameter-free algorithm for PSO (Particle Swarm Optimization), called TRIBES. In this paper, we propose to adapt TRIBES to solve discrete problems. To highlight our approach, we treat of the well-known NP-Hard Traveling Salesman Problem (TSP) problem. Modifications in different mechanisms and formulae adaptations are made, like in the generation process of the particles and in the displacement strategies. The experimentations results show the good behavior of the “Adapted TRIBES”. Comparison is made with a basic genetic algorithm, and with a branch and bound method.","PeriodicalId":305060,"journal":{"name":"2011 10th International Symposium on Programming and Systems","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Symposium on Programming and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPS.2011.5898889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Metaheuristics constitute an important alternative in solving NP-Hard combinatorial optimization problems. Unfortunately, many parameters have to be tuned for any metaheuristic, and their values may have a great influence on the efficiency and effectiveness of the search. The exploration of an optimal combination of such values may be difficult and big time consuming. Clerc et al have defined a parameter-free algorithm for PSO (Particle Swarm Optimization), called TRIBES. In this paper, we propose to adapt TRIBES to solve discrete problems. To highlight our approach, we treat of the well-known NP-Hard Traveling Salesman Problem (TSP) problem. Modifications in different mechanisms and formulae adaptations are made, like in the generation process of the particles and in the displacement strategies. The experimentations results show the good behavior of the “Adapted TRIBES”. Comparison is made with a basic genetic algorithm, and with a branch and bound method.
旅行商问题的自适应部落算法
元启发式算法是求解NP-Hard组合优化问题的一种重要方法。不幸的是,对于任何元启发式算法,都必须调整许多参数,并且它们的值可能对搜索的效率和有效性有很大的影响。探索这些值的最佳组合可能是困难的,而且耗费大量时间。Clerc等人为粒子群优化(PSO)定义了一种无参数算法,称为TRIBES。在本文中,我们提出了适应部落来解决离散问题。为了突出我们的方法,我们处理了著名的NP-Hard旅行商问题(TSP)问题。在不同的机制和公式中进行了修改,例如在粒子的生成过程中以及在位移策略中。实验结果显示“适应部落”的良好行为。并与基本遗传算法和分支定界法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信