Statistical post-processing improves basis pursuit denoising performance

S. Chatterjee, D. Sundman, M. Skoglund
{"title":"Statistical post-processing improves basis pursuit denoising performance","authors":"S. Chatterjee, D. Sundman, M. Skoglund","doi":"10.1109/ISSPIT.2010.5711773","DOIUrl":null,"url":null,"abstract":"For compressive sensing (CS), we explore the framework of Bayesian linear models to achieve a robust reconstruction performance in the presence of measurement noise. Using a priori statistical knowledge, we develop a two stage method such that the performance of a standard l1 norm minimization based CS method improves. In the two stage framework, we use a standard basis pursuit denoising (BPDN) method in the first stage for estimating the support set of higher amplitude signal components and then use a linear estimator in the second stage for achieving better CS reconstruction. Through experimental evaluations, we show that the use of the new two stage based algorithm leads to a better CS reconstruction performance than the direct use of the standard BPDN method.","PeriodicalId":308189,"journal":{"name":"The 10th IEEE International Symposium on Signal Processing and Information Technology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 10th IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2010.5711773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

For compressive sensing (CS), we explore the framework of Bayesian linear models to achieve a robust reconstruction performance in the presence of measurement noise. Using a priori statistical knowledge, we develop a two stage method such that the performance of a standard l1 norm minimization based CS method improves. In the two stage framework, we use a standard basis pursuit denoising (BPDN) method in the first stage for estimating the support set of higher amplitude signal components and then use a linear estimator in the second stage for achieving better CS reconstruction. Through experimental evaluations, we show that the use of the new two stage based algorithm leads to a better CS reconstruction performance than the direct use of the standard BPDN method.
统计后处理提高了基追求去噪的性能
对于压缩感知(CS),我们探索了贝叶斯线性模型的框架,以在存在测量噪声的情况下实现鲁棒重建性能。利用先验统计知识,我们开发了一种两阶段方法,使基于标准l1范数最小化的CS方法的性能得到改善。在两阶段框架中,我们在第一阶段使用标准基追踪去噪(BPDN)方法来估计高幅度信号分量的支持集,然后在第二阶段使用线性估计器来实现更好的CS重构。通过实验评估,我们表明使用新的基于两阶段的算法比直接使用标准BPDN方法具有更好的CS重建性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信