On learning monotone Boolean functions

Avrim Blum, C. Burch, J. Langford
{"title":"On learning monotone Boolean functions","authors":"Avrim Blum, C. Burch, J. Langford","doi":"10.1109/SFCS.1998.743491","DOIUrl":null,"url":null,"abstract":"We consider the problem of learning monotone Boolean functions over {0, 1}/sup n/ under the uniform distribution. Specifically, given a polynomial number of uniform random samples for an unknown monotone Boolean function f, and given polynomial completing time, we would like to approximate f as well as possible. We describe a simple algorithm that we prove achieves error at most 1/2-/spl Omega/(1//spl radic/n), improving on the previous best bound of 1/2-/spl Omega/((log/sup 2/ n)/n). We also prove that no algorithm, given a polynomial number of samples, can guarantee error 1/2-/spl omega/((log n)//spl radic/n), improving on the previous best hardness bound of O(1//spl radic/n). These lower bounds hold even if the learning algorithm is allowed membership queries. Thus this paper settles to an O(log n) factor the question of the best achievable error for learning the class of monotone Boolean functions with respect to the uniform distribution.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

We consider the problem of learning monotone Boolean functions over {0, 1}/sup n/ under the uniform distribution. Specifically, given a polynomial number of uniform random samples for an unknown monotone Boolean function f, and given polynomial completing time, we would like to approximate f as well as possible. We describe a simple algorithm that we prove achieves error at most 1/2-/spl Omega/(1//spl radic/n), improving on the previous best bound of 1/2-/spl Omega/((log/sup 2/ n)/n). We also prove that no algorithm, given a polynomial number of samples, can guarantee error 1/2-/spl omega/((log n)//spl radic/n), improving on the previous best hardness bound of O(1//spl radic/n). These lower bounds hold even if the learning algorithm is allowed membership queries. Thus this paper settles to an O(log n) factor the question of the best achievable error for learning the class of monotone Boolean functions with respect to the uniform distribution.
关于单调布尔函数的学习
考虑均匀分布下{0,1}/sup n/上单调布尔函数的学习问题。具体来说,给定一个未知单调布尔函数f的均匀随机样本的多项式个数,以及给定多项式完成时间,我们希望尽可能地近似f。我们描述了一个简单的算法,我们证明了该算法的误差不超过1/2-/spl ω /(1//spl径向/n),改进了之前的最佳界1/2-/spl ω /((log/sup 2/ n)/n)。我们还证明了在给定多项式样本数的情况下,没有任何算法可以保证误差1/2-/spl ω /((log n)//spl radic/n),改进了之前的最佳硬度界O(1//spl radic/n)。即使学习算法允许成员查询,这些下界仍然成立。因此,本文解决了关于单调布尔函数在均匀分布下的最佳可达误差问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信