A New Siamese Co-attention Network for Unsupervised Video Object Segmentation

Zhenghao Zhang, Liguo Sun, Lingyu Si, C. Zheng
{"title":"A New Siamese Co-attention Network for Unsupervised Video Object Segmentation","authors":"Zhenghao Zhang, Liguo Sun, Lingyu Si, C. Zheng","doi":"10.1109/ICCCS52626.2021.9449293","DOIUrl":null,"url":null,"abstract":"Unsupervised Video Object Segmentation (UVOS) aims to generate accurate pixel-level masks for moving objects without any prior knowledge. A lot of UVOS methods process frames independently by using image segmentation model without considering the temporal information between consecutive frames. Other works rely on RNNs or motion cues to find objects that need to be tracked, these models learn short-term temporal dependencies and thus tend to accumulate errors over time. We propose a new Siamese Co-attention Network to tackle Unsupervised Video Object Segmentation task based on SOLOv2. The Co-attention module in our Siamese Network captures global correspondences between a reference frame and the current one from same video, and it can learn pairwise correlation at any distance to help current frame correctly distinguish primary objects from a global view. Our proposed method is evaluated in TianChi VOS Challenge and DAVIS2017, and the results indicate that it exhibits superior performance.","PeriodicalId":376290,"journal":{"name":"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS52626.2021.9449293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unsupervised Video Object Segmentation (UVOS) aims to generate accurate pixel-level masks for moving objects without any prior knowledge. A lot of UVOS methods process frames independently by using image segmentation model without considering the temporal information between consecutive frames. Other works rely on RNNs or motion cues to find objects that need to be tracked, these models learn short-term temporal dependencies and thus tend to accumulate errors over time. We propose a new Siamese Co-attention Network to tackle Unsupervised Video Object Segmentation task based on SOLOv2. The Co-attention module in our Siamese Network captures global correspondences between a reference frame and the current one from same video, and it can learn pairwise correlation at any distance to help current frame correctly distinguish primary objects from a global view. Our proposed method is evaluated in TianChi VOS Challenge and DAVIS2017, and the results indicate that it exhibits superior performance.
一种新的Siamese共关注网络用于无监督视频对象分割
无监督视频对象分割(UVOS)的目的是在没有任何先验知识的情况下为运动对象生成准确的像素级掩码。许多UVOS方法使用图像分割模型独立处理帧,而不考虑连续帧之间的时间信息。其他工作依赖于rnn或运动线索来寻找需要跟踪的对象,这些模型学习短期时间依赖性,因此倾向于随着时间的推移积累错误。为了解决基于SOLOv2的无监督视频对象分割问题,提出了一种新的Siamese协同关注网络。Siamese Network中的Co-attention模块捕获同一视频中参考帧和当前帧之间的全局对应关系,并且可以在任何距离上学习两两相关,以帮助当前帧从全局视图中正确区分主要对象。我们提出的方法在天池VOS挑战赛和DAVIS2017中进行了评估,结果表明它具有优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信