{"title":"Classification of Cancerous Profiles Using Machine Learning","authors":"Aman Sharma, Rinkle Rani","doi":"10.1109/mlds.2017.6","DOIUrl":null,"url":null,"abstract":"There are a variety of options available for cancer treatment. The type of treatment recommended for an individual is influenced by various factors such as cancer-type, the severity of a cancer (stage) and most important the genetic heterogeneity. In such a complex environment, the targeted drug treatments are likely to be irresponsive or respond differently. To study anti-cancer drug response we need to understand cancerous profiles. These cancerous profiles carry information which can reveal the underlying factors responsible for cancer growth. Hence, there is need to analyze cancer data for predicting optimal treatment options. Analysis of such profiles can help to predict and discover potential drug targets and drugs. In this paper the main aim is to provide machine learning based classification technique for cancerous profiles.","PeriodicalId":248656,"journal":{"name":"2017 International Conference on Machine Learning and Data Science (MLDS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Machine Learning and Data Science (MLDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlds.2017.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
There are a variety of options available for cancer treatment. The type of treatment recommended for an individual is influenced by various factors such as cancer-type, the severity of a cancer (stage) and most important the genetic heterogeneity. In such a complex environment, the targeted drug treatments are likely to be irresponsive or respond differently. To study anti-cancer drug response we need to understand cancerous profiles. These cancerous profiles carry information which can reveal the underlying factors responsible for cancer growth. Hence, there is need to analyze cancer data for predicting optimal treatment options. Analysis of such profiles can help to predict and discover potential drug targets and drugs. In this paper the main aim is to provide machine learning based classification technique for cancerous profiles.