Surrogate Infeasible Fitness Acquirement FI-2Pop for Procedural Content Generation

R. Gallotta, Kai Arulkumaran, L. Soros
{"title":"Surrogate Infeasible Fitness Acquirement FI-2Pop for Procedural Content Generation","authors":"R. Gallotta, Kai Arulkumaran, L. Soros","doi":"10.1109/CoG51982.2022.9893592","DOIUrl":null,"url":null,"abstract":"When generating content for video games using procedural content generation (PCG), the goal is to create functional assets of high quality. Prior work has commonly leveraged the feasible-infeasible two-population (FI-2Pop) constrained optimisation algorithm for PCG, sometimes in combination with the multi-dimensional archive of phenotypic-elites (MAP-Elites) algorithm for finding a set of diverse solutions. However, the fitness function for the infeasible population only takes into account the number of constraints violated. In this paper we present a variant of FI-2Pop in which a surrogate model is trained to predict the fitness of feasible children from infeasible parents, weighted by the probability of producing feasible children. This drives selection towards higher-fitness, feasible solutions. We demonstrate our method on the task of generating spaceships for Space Engineers, showing improvements over both standard FI-2Pop, and the more recent multi-emitter constrained MAP-Elites algorithm.","PeriodicalId":394281,"journal":{"name":"2022 IEEE Conference on Games (CoG)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Games (CoG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoG51982.2022.9893592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

When generating content for video games using procedural content generation (PCG), the goal is to create functional assets of high quality. Prior work has commonly leveraged the feasible-infeasible two-population (FI-2Pop) constrained optimisation algorithm for PCG, sometimes in combination with the multi-dimensional archive of phenotypic-elites (MAP-Elites) algorithm for finding a set of diverse solutions. However, the fitness function for the infeasible population only takes into account the number of constraints violated. In this paper we present a variant of FI-2Pop in which a surrogate model is trained to predict the fitness of feasible children from infeasible parents, weighted by the probability of producing feasible children. This drives selection towards higher-fitness, feasible solutions. We demonstrate our method on the task of generating spaceships for Space Engineers, showing improvements over both standard FI-2Pop, and the more recent multi-emitter constrained MAP-Elites algorithm.
程序内容生成的替代不可行适应度获取FI-2Pop
当使用程序内容生成(PCG)为电子游戏生成内容时,目标是创造高质量的功能资产。先前的工作通常利用可行-不可行双种群(FI-2Pop)约束优化算法来解决PCG问题,有时与表型精英的多维档案(MAP-Elites)算法相结合,以找到一组不同的解决方案。然而,不可行的总体适应度函数只考虑违反约束的个数。在本文中,我们提出了一个FI-2Pop的变体,其中一个代理模型被训练来预测不可行父母的可行子女的适合度,并由产生可行子女的概率加权。这促使选择趋向于适应性更高、可行的解决方案。我们在为空间工程师生成宇宙飞船的任务上展示了我们的方法,显示了对标准FI-2Pop和最近的多发射器约束MAP-Elites算法的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信