Detection of Abnormalities in Brain using Machine Learning in Medical Image Analysis

A. Sivasangari, Sivakumar, suji helen, S. Deepa, Vignesh, Suja
{"title":"Detection of Abnormalities in Brain using Machine Learning in Medical Image Analysis","authors":"A. Sivasangari, Sivakumar, suji helen, S. Deepa, Vignesh, Suja","doi":"10.1109/ICSCDS53736.2022.9761029","DOIUrl":null,"url":null,"abstract":"In a variety of medical diagnostic applications, Automatic Defect Detection in clinical imaging has turned into the developing field. Computerized discovery of cancer in MRI which gives the data about the aberrant tissues which is essential for the diagnosis. The traditional technique for Abnormalities detection in Brain is human investigation. This strategy is illogical because of the vast volume of data and the imperfection. Henceforth, trusted and programmed algorithms are preferred to prevent the passing pace of human. In this way, Automated tumor discovery techniques are created as it would save the specialist (radiologist) time and acquire the perfectness. Because of the complexities and diversity of malignancies, MRI brain tumour identification is a difficult task. Machine learning approaches are employed to get over the limitations of traditional classifiers in detecting malignancies in brain scans in this study. MRI scans can be utilised to successfully identify sick cells from healthy ones using machine learning and image classifiers. Convolutional neural network algorithm has been used for classification.","PeriodicalId":433549,"journal":{"name":"2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCDS53736.2022.9761029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In a variety of medical diagnostic applications, Automatic Defect Detection in clinical imaging has turned into the developing field. Computerized discovery of cancer in MRI which gives the data about the aberrant tissues which is essential for the diagnosis. The traditional technique for Abnormalities detection in Brain is human investigation. This strategy is illogical because of the vast volume of data and the imperfection. Henceforth, trusted and programmed algorithms are preferred to prevent the passing pace of human. In this way, Automated tumor discovery techniques are created as it would save the specialist (radiologist) time and acquire the perfectness. Because of the complexities and diversity of malignancies, MRI brain tumour identification is a difficult task. Machine learning approaches are employed to get over the limitations of traditional classifiers in detecting malignancies in brain scans in this study. MRI scans can be utilised to successfully identify sick cells from healthy ones using machine learning and image classifiers. Convolutional neural network algorithm has been used for classification.
医学图像分析中使用机器学习检测大脑异常
在各种医学诊断应用中,临床影像学中的缺陷自动检测已成为发展中的领域。在MRI中计算机化发现肿瘤,提供异常组织的数据,这是诊断所必需的。传统的脑异常检测方法是人体检查。这种策略是不合逻辑的,因为数据量巨大且不完善。从此以后,可信的程序化算法被首选,以防止人类的流逝步伐。通过这种方式,创建了自动化肿瘤发现技术,因为它可以节省专家(放射科医生)的时间并获得完美。由于恶性肿瘤的复杂性和多样性,MRI脑肿瘤识别是一项艰巨的任务。本研究采用机器学习方法来克服传统分类器在脑部扫描中检测恶性肿瘤的局限性。MRI扫描可以利用机器学习和图像分类器成功地从健康细胞中识别出病态细胞。卷积神经网络算法已被用于分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信