Image enhancement and noise suppression for Optical Coherence Tomography images based on variational image decomposition and gaussian mixture model

Yu Wang, Biyuan Li, Jun Zhang
{"title":"Image enhancement and noise suppression for Optical Coherence Tomography images based on variational image decomposition and gaussian mixture model","authors":"Yu Wang, Biyuan Li, Jun Zhang","doi":"10.1109/ICDSCA56264.2022.9988346","DOIUrl":null,"url":null,"abstract":"Optical Coherence Tomography (OCT) images often suffer from low contrast and severe speckle noise. For such need, this work presents a new image enhancement and noise suppression method for OCT images. A new variational image decomposition (VID) model TV-Hilbert-Curvelet is proposed in order to decompose the OCT image into three part: structure, background and noise. And the gaussian mixture model (GMM) is used to generate one binary mask template from the background part, the multi scale Retinex (MSR) is used to enhance the structure part. Experimental results show that the proposed method can enhance the image structure and suppress speckle noise well, and three quality indexes are used to verify the experimental results of the proposed method.","PeriodicalId":416983,"journal":{"name":"2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSCA56264.2022.9988346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optical Coherence Tomography (OCT) images often suffer from low contrast and severe speckle noise. For such need, this work presents a new image enhancement and noise suppression method for OCT images. A new variational image decomposition (VID) model TV-Hilbert-Curvelet is proposed in order to decompose the OCT image into three part: structure, background and noise. And the gaussian mixture model (GMM) is used to generate one binary mask template from the background part, the multi scale Retinex (MSR) is used to enhance the structure part. Experimental results show that the proposed method can enhance the image structure and suppress speckle noise well, and three quality indexes are used to verify the experimental results of the proposed method.
基于变分图像分解和高斯混合模型的光学相干层析成像图像增强和噪声抑制
光学相干层析成像(OCT)图像经常存在对比度低、散斑噪声严重的问题。针对这一需求,本文提出了一种新的OCT图像增强和噪声抑制方法。为了将OCT图像分解为结构、背景和噪声三部分,提出了一种新的变分图像分解模型TV-Hilbert-Curvelet。利用高斯混合模型(GMM)从背景部分生成二值掩模模板,利用多尺度Retinex (MSR)对结构部分进行增强。实验结果表明,该方法能较好地增强图像结构,抑制散斑噪声,并利用三个质量指标验证了该方法的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信