HOPF BIFURCATION IN THE DELAYED FRACTIONAL LESLIE-GOWER MODEL WITH HOLLING TYPE II FUNCTIONAL RESPONSE

Xiaoping Chen, Chengdai Huang, Jinde Cao, Xueying Shi, An Luo
{"title":"HOPF BIFURCATION IN THE DELAYED FRACTIONAL LESLIE-GOWER MODEL WITH HOLLING TYPE II FUNCTIONAL RESPONSE","authors":"Xiaoping Chen, Chengdai Huang, Jinde Cao, Xueying Shi, An Luo","doi":"10.11948/20220451","DOIUrl":null,"url":null,"abstract":"In this paper the fractional-order Leslie-Gower model with Holling type II functional response and a single time delay is firstly considered. The stability interval and bifurcation points of developed model are derived via analytic extrapolation by regarding time delay as a bifurcation parameter. Besides, a delayed feedback control is successfully designed to put off the onset of Hopf bifurcation, extend the stability domain, and then the system possesses the stability in a larger parameter range. Some numerical simulations are shown in order to check the availability of the theoretical results.","PeriodicalId":241300,"journal":{"name":"Journal of Applied Analysis & Computation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Analysis & Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11948/20220451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper the fractional-order Leslie-Gower model with Holling type II functional response and a single time delay is firstly considered. The stability interval and bifurcation points of developed model are derived via analytic extrapolation by regarding time delay as a bifurcation parameter. Besides, a delayed feedback control is successfully designed to put off the onset of Hopf bifurcation, extend the stability domain, and then the system possesses the stability in a larger parameter range. Some numerical simulations are shown in order to check the availability of the theoretical results.
具有holling ii型功能响应的延迟分数阶leslie-gower模型的Hopf分岔
本文首先考虑具有Holling II型泛函响应和单时滞的分数阶Leslie-Gower模型。以时滞为分岔参数,通过解析外推得到了模型的稳定区间和分岔点。此外,设计了延迟反馈控制,延迟了Hopf分岔的发生,扩展了系统的稳定域,使系统在更大的参数范围内保持稳定。通过数值模拟验证了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信