Mitigating the impact of speech recognition errors on chatbot using sequence-to-sequence model

Pin-Jung Chen, I-Hung Hsu, Yi Yao Huang, Hung-yi Lee
{"title":"Mitigating the impact of speech recognition errors on chatbot using sequence-to-sequence model","authors":"Pin-Jung Chen, I-Hung Hsu, Yi Yao Huang, Hung-yi Lee","doi":"10.1109/ASRU.2017.8268977","DOIUrl":null,"url":null,"abstract":"We apply sequence-to-sequence model to mitigate the impact of speech recognition errors on open domain end-to-end dialog generation. We cast the task as a domain adaptation problem where ASR transcriptions and original texts are in two different domains. In this paper, our proposed model includes two individual encoders for each domain data and make their hidden states similar to ensure the decoder predict the same dialog text. The method demonstrates that the sequence-to-sequence model can learn the ASR transcriptions and original text pair having the same meaning and eliminate the speech recognition errors. Experimental results on Cornell movie dialog dataset demonstrate that the domain adaption system help the spoken dialog system generate more similar responses with the original text answers.","PeriodicalId":290868,"journal":{"name":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2017.8268977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We apply sequence-to-sequence model to mitigate the impact of speech recognition errors on open domain end-to-end dialog generation. We cast the task as a domain adaptation problem where ASR transcriptions and original texts are in two different domains. In this paper, our proposed model includes two individual encoders for each domain data and make their hidden states similar to ensure the decoder predict the same dialog text. The method demonstrates that the sequence-to-sequence model can learn the ASR transcriptions and original text pair having the same meaning and eliminate the speech recognition errors. Experimental results on Cornell movie dialog dataset demonstrate that the domain adaption system help the spoken dialog system generate more similar responses with the original text answers.
利用序列对序列模型减轻语音识别错误对聊天机器人的影响
我们采用序列到序列模型来减轻语音识别错误对开放域端到端对话生成的影响。我们将该任务视为一个领域适应问题,其中ASR转录和原始文本位于两个不同的领域。在本文中,我们提出的模型为每个领域数据包括两个独立的编码器,并使它们的隐藏状态相似,以确保解码器预测相同的对话文本。该方法表明,序列到序列模型可以学习到具有相同含义的ASR转录词和原始文本对,消除了语音识别错误。在Cornell电影对话数据集上的实验结果表明,领域适应系统可以帮助口语对话系统生成与原始文本答案更相似的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信