An improved FCM clustering algorithm based on cosine similarity

Minxuan Li
{"title":"An improved FCM clustering algorithm based on cosine similarity","authors":"Minxuan Li","doi":"10.1145/3335656.3335693","DOIUrl":null,"url":null,"abstract":"Based on the traditional Fuzzy C-means (FCM) clustering algorithm, this study adds cosine similarity as a correction factor and optimizes the FCM algorithm by optimizing the membership degree of the objective function. The results show that the matrix estimation error obtained by the improved algorithm is smaller and the precision is higher, which can reduce the normalized mean square error by about 20.67%, and the angular deviation is reduced by about 8° on average.","PeriodicalId":396772,"journal":{"name":"Proceedings of the 2019 International Conference on Data Mining and Machine Learning","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 International Conference on Data Mining and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3335656.3335693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Based on the traditional Fuzzy C-means (FCM) clustering algorithm, this study adds cosine similarity as a correction factor and optimizes the FCM algorithm by optimizing the membership degree of the objective function. The results show that the matrix estimation error obtained by the improved algorithm is smaller and the precision is higher, which can reduce the normalized mean square error by about 20.67%, and the angular deviation is reduced by about 8° on average.
基于余弦相似度的改进FCM聚类算法
本研究在传统模糊c均值(Fuzzy C-means, FCM)聚类算法的基础上,加入余弦相似度作为校正因子,通过优化目标函数的隶属度对FCM算法进行优化。结果表明,改进算法得到的矩阵估计误差更小,精度更高,可将归一化均方误差降低约20.67%,角偏差平均降低约8°。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信