Human Action Recognition with Attribute Regularization

Zhong Zhang, Chunheng Wang, Baihua Xiao, Wen Zhou, Shuang Liu
{"title":"Human Action Recognition with Attribute Regularization","authors":"Zhong Zhang, Chunheng Wang, Baihua Xiao, Wen Zhou, Shuang Liu","doi":"10.1109/AVSS.2012.41","DOIUrl":null,"url":null,"abstract":"Recently, attributes have been introduced to help object classification. Multi-task learning is an effective methodology to achieve this goal, which shares low-level features between attribute and object classifiers. Yet such a method neglects the constraints that attributes impose on classes which may fail to constrain the semantic relationship between the attribute and object classifiers. In this paper, we explicitly consider such attribute-object relationship, and correspondingly, we modify the multi-task learning model by adding attribute regularization. In this way, the learned model not only shares the low-level features, but also gets regularized according to the semantic constrains. Our method is verified on two challenging datasets (KTH and Olympic Sports), and the experimental results demonstrate that our method achieves better results than previous methods in human action recognition.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, attributes have been introduced to help object classification. Multi-task learning is an effective methodology to achieve this goal, which shares low-level features between attribute and object classifiers. Yet such a method neglects the constraints that attributes impose on classes which may fail to constrain the semantic relationship between the attribute and object classifiers. In this paper, we explicitly consider such attribute-object relationship, and correspondingly, we modify the multi-task learning model by adding attribute regularization. In this way, the learned model not only shares the low-level features, but also gets regularized according to the semantic constrains. Our method is verified on two challenging datasets (KTH and Olympic Sports), and the experimental results demonstrate that our method achieves better results than previous methods in human action recognition.
基于属性正则化的人体动作识别
最近,引入了属性来帮助对象分类。多任务学习是实现这一目标的有效方法,它在属性分类器和对象分类器之间共享低级特征。然而,这种方法忽略了属性对类施加的约束,这可能无法约束属性和对象分类器之间的语义关系。在本文中,我们明确地考虑了这种属性-对象关系,并相应地通过添加属性正则化来修改多任务学习模型。这样,学习到的模型既可以共享底层特征,又可以根据语义约束进行正则化。在两个具有挑战性的数据集(KTH和Olympic Sports)上验证了我们的方法,实验结果表明,我们的方法在人体动作识别方面取得了比以往方法更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信