Finding Diameter-Reducing Shortcuts in Trees

Davide Bilò, Luciano Gualà, S. Leucci, Luca Pepè Sciarria
{"title":"Finding Diameter-Reducing Shortcuts in Trees","authors":"Davide Bilò, Luciano Gualà, S. Leucci, Luca Pepè Sciarria","doi":"10.48550/arXiv.2305.17385","DOIUrl":null,"url":null,"abstract":"In the \\emph{$k$-Diameter-Optimally Augmenting Tree Problem} we are given a tree $T$ of $n$ vertices as input. The tree is embedded in an unknown \\emph{metric} space and we have unlimited access to an oracle that, given two distinct vertices $u$ and $v$ of $T$, can answer queries reporting the cost of the edge $(u,v)$ in constant time. We want to augment $T$ with $k$ shortcuts in order to minimize the diameter of the resulting graph. For $k=1$, $O(n \\log n)$ time algorithms are known both for paths [Wang, CG 2018] and trees [Bil\\`o, TCS 2022]. In this paper we investigate the case of multiple shortcuts. We show that no algorithm that performs $o(n^2)$ queries can provide a better than $10/9$-approximate solution for trees for $k\\geq 3$. For any constant $\\varepsilon>0$, we instead design a linear-time $(1+\\varepsilon)$-approximation algorithm for paths and $k = o(\\sqrt{\\log n})$, thus establishing a dichotomy between paths and trees for $k\\geq 3$. We achieve the claimed running time by designing an ad-hoc data structure, which also serves as a key component to provide a linear-time $4$-approximation algorithm for trees, and to compute the diameter of graphs with $n + k - 1$ edges in time $O(n k \\log n)$ even for non-metric graphs. Our data structure and the latter result are of independent interest.","PeriodicalId":380945,"journal":{"name":"Workshop on Algorithms and Data Structures","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Algorithms and Data Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.17385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the \emph{$k$-Diameter-Optimally Augmenting Tree Problem} we are given a tree $T$ of $n$ vertices as input. The tree is embedded in an unknown \emph{metric} space and we have unlimited access to an oracle that, given two distinct vertices $u$ and $v$ of $T$, can answer queries reporting the cost of the edge $(u,v)$ in constant time. We want to augment $T$ with $k$ shortcuts in order to minimize the diameter of the resulting graph. For $k=1$, $O(n \log n)$ time algorithms are known both for paths [Wang, CG 2018] and trees [Bil\`o, TCS 2022]. In this paper we investigate the case of multiple shortcuts. We show that no algorithm that performs $o(n^2)$ queries can provide a better than $10/9$-approximate solution for trees for $k\geq 3$. For any constant $\varepsilon>0$, we instead design a linear-time $(1+\varepsilon)$-approximation algorithm for paths and $k = o(\sqrt{\log n})$, thus establishing a dichotomy between paths and trees for $k\geq 3$. We achieve the claimed running time by designing an ad-hoc data structure, which also serves as a key component to provide a linear-time $4$-approximation algorithm for trees, and to compute the diameter of graphs with $n + k - 1$ edges in time $O(n k \log n)$ even for non-metric graphs. Our data structure and the latter result are of independent interest.
在树中寻找减小直径的捷径
在\emph{$k$-直径-最优增广树问题中},我们得到一棵包含$n$个顶点的树$T$作为输入。树嵌入在一个未知的\emph{度量}空间中,我们可以无限制地访问一个oracle,给定$T$的两个不同的顶点$u$和$v$,可以回答在恒定时间内报告边$(u,v)$成本的查询。我们想用$k$快捷方式来增强$T$,以便最小化生成图的直径。对于$k=1$, $O(n \log n)$时间算法既适用于路径[Wang, CG 2018],也适用于树[Bilò, TCS 2022]。本文研究了多重捷径的情况。我们表明,执行$o(n^2)$查询的任何算法都不能为$k\geq 3$的树提供比$10/9$ -近似解更好的解。对于任意常数$\varepsilon>0$,我们为路径和$k = o(\sqrt{\log n})$设计了线性时间$(1+\varepsilon)$近似算法,从而为$k\geq 3$建立了路径和树之间的二分类。我们通过设计一个特设的数据结构来实现所要求的运行时间,该数据结构也是为树提供线性时间$4$ -近似算法的关键组件,并且即使对于非度量图,也可以在$O(n k \log n)$时间内计算具有$n + k - 1$边的图的直径。我们的数据结构和后一个结果是独立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信