Selecting the Most Influential Nodes in Social Networks

PabloA . Estevez, Pablo A. Vera, Kazumi Saito
{"title":"Selecting the Most Influential Nodes in Social Networks","authors":"PabloA . Estevez, Pablo A. Vera, Kazumi Saito","doi":"10.1109/IJCNN.2007.4371333","DOIUrl":null,"url":null,"abstract":"A set covering greedy algorithm is proposed for solving the influence maximization problem in social networks. Two information diffusion models are considered: Independent Cascade Model and Linear Threshold Model. The proposed algorithm is compared with traditional maximization algorithms such as simple greedy and degree centrality using three data sets. In addition, an algorithm for mapping social networks is proposed, which allows visualizing the infection process and how the different algorithms evolve. The proposed approach is useful for mining large social networks.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

Abstract

A set covering greedy algorithm is proposed for solving the influence maximization problem in social networks. Two information diffusion models are considered: Independent Cascade Model and Linear Threshold Model. The proposed algorithm is compared with traditional maximization algorithms such as simple greedy and degree centrality using three data sets. In addition, an algorithm for mapping social networks is proposed, which allows visualizing the infection process and how the different algorithms evolve. The proposed approach is useful for mining large social networks.
选择社会网络中最具影响力的节点
针对社交网络中的影响最大化问题,提出了一种集覆盖贪心算法。考虑了两种信息扩散模型:独立级联模型和线性阈值模型。利用3个数据集,将该算法与简单贪心和度中心性等传统的最大化算法进行了比较。此外,还提出了一种映射社交网络的算法,该算法允许可视化感染过程以及不同算法如何演变。所提出的方法对于挖掘大型社交网络非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信